forked from h2oai/h2o-llmstudio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprompt.py
151 lines (116 loc) · 4.43 KB
/
prompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
from llm_studio.src.utils.config_utils import load_config_yaml
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import argparse
import numpy as np
import torch
from llm_studio.src.datasets.text_utils import get_tokenizer
from llm_studio.src.utils.modeling_utils import load_checkpoint
def parse_param(cfg, prompt):
prompt = prompt.replace("--", "")
parts = prompt.split(" ")
args = [" ".join(parts[i : i + 2]) for i in range(0, len(parts), 2)]
for arg in args:
splitted_arg = arg.split(" ")
setattr(
cfg.prediction,
splitted_arg[0],
type(getattr(cfg.prediction, splitted_arg[0]))(splitted_arg[1]),
)
print(
f"Permanently changed {splitted_arg[0]} to",
getattr(cfg.prediction, splitted_arg[0]),
)
return cfg
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Sample prompting.")
parser.add_argument(
"-e",
"--experiment",
type=str,
required=True,
help="Name of the experiment output folder",
)
parser.add_argument(
"-d", "--device", type=str, required=False, default="cuda:0", help="Device"
)
args, unknown = parser.parse_known_args()
DEVICE = args.device
cfg = load_config_yaml(os.path.join(args.experiment, "cfg.yaml"))
cfg.training.epochs = 0
cfg.environment._device = DEVICE
cfg.environment._local_rank = 0
cfg.tokenizer.padding_quantile = 0
cfg.environment.mixed_precision = True
cfg.architecture.gradient_checkpointing = False
cfg.architecture.pretrained = False
cfg.prediction.max_length_inference = 256
if cfg.dataset.text_prompt_start == "":
cfg.dataset.text_prompt_start = "\n"
# cfg.prediction.min_length_inference = 2
# cfg.prediction.max_length_inference = 256
# cfg.prediction.repetition_penalty = 1.5
# cfg.prediction.temperature = 0.3
# cfg.prediction.num_beams = 2
# cfg.prediction.do_sample = False
# cfg.prediction.top_p = 0.9
# cfg.prediction.top_k = 40
tokenizer = get_tokenizer(cfg)
print("Loading model weights...")
with torch.device(DEVICE):
model = cfg.architecture.model_class(cfg)
cfg.architecture.pretrained_weights = os.path.join(
args.experiment, "checkpoint.pth"
)
load_checkpoint(cfg, model, strict=True)
model = model.to(DEVICE).eval()
model.backbone.use_cache = True
print()
print("=============")
print(
"You can change inference parameters on the fly by typing --param value, "
"such as --num_beams 4. You can also chain them such as --num_beams 4 "
"--top_k 30."
)
print()
while True:
prompt = input("Please enter some prompt (type 'exit' to stop): ")
try:
if prompt.lower() == "exit":
break
if prompt.lower().startswith("--"):
cfg = parse_param(cfg, prompt)
continue
prompt = cfg.dataset.dataset_class.parse_prompt(cfg, prompt)
print(prompt)
inputs = cfg.dataset.dataset_class.encode(
tokenizer, prompt, cfg.tokenizer.max_length_prompt, "left"
)
inputs["prompt_input_ids"] = inputs.pop("input_ids").unsqueeze(0).to(DEVICE)
inputs["prompt_attention_mask"] = (
inputs.pop("attention_mask").unsqueeze(0).to(DEVICE)
)
output = {}
with torch.no_grad():
with torch.cuda.amp.autocast():
output["predicted_answer_ids"] = (
model.generate(inputs, cfg).detach().cpu()
)
predicted_text = [
tokenizer.decode(ids, skip_special_tokens=True)
for ids in output["predicted_answer_ids"]
]
output["predicted_text"] = np.array(predicted_text)
output = cfg.dataset.dataset_class.clean_output(output, cfg)
output = output["predicted_text"][0]
print(output)
print()
except Exception as e:
print("Error: {}".format(e))
print("Something went wrong, please try again.")