-
Notifications
You must be signed in to change notification settings - Fork 33
/
rscls.py
413 lines (363 loc) · 12.7 KB
/
rscls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# -*- coding: utf-8 -*-
"""
This is a script for satellite image classification
Last updated on Aug 6 2019
@author: Shengjie Liu
@Email: [email protected]
@functions
1. generate samples from satellite images
2. grid search SVM/random forest parameters
3. object-based post-classification refinement
superpixel-based regularization for classification maps
4. confusion matrix: OA, kappa, PA, UA, AA
5. save maps as images
@sample codes
c = rscls.rscls(image,ground_truth,cls=number_of_classes)
c.padding(patch)
c.normalize(style='-11') # optional
x_train,y_train = c.train_sample(num_per_cls)
x_train,y_train = rscls.make_sample(x_train,y_train)
x_test,y_test = c.test_sample()
# for superpixel refinement
c.locate_obj(seg)
pcmap = rscls.obpc(c.seg,predicted,c.obj)
@Notes
Ground truth file should be uint8 format begin with 1
Background = 0
"""
import numpy as np
import copy
import scipy.stats as stats
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
import matplotlib.pyplot as plt
class rscls:
def __init__(self,im,gt,cls):
if cls==0:
print('num of class not specified !!')
self.im = copy.deepcopy(im)
if gt.max()!=cls:
self.gt = copy.deepcopy(gt-1)
else:
self.gt = copy.deepcopy(gt-1)
self.gt_b = copy.deepcopy(gt)
self.cls = cls
self.patch = 1
self.imx,self.imy,self.imz = self.im.shape
self.record = []
self.sample = {}
def padding(self,patch):
self.patch = patch
pad = self.patch//2
r1 = np.repeat([self.im[0,:,:]], pad, axis=0)
r2 = np.repeat([self.im[-1,:,:]], pad, axis=0)
self.im = np.concatenate((r1, self.im, r2))
r1 = np.reshape(self.im[:,0,:],[self.imx + 2 * pad, 1, self.imz])
r2 = np.reshape(self.im[:,-1,:],[self.imx + 2 * pad, 1, self.imz])
r1 = np.repeat(r1, pad, axis=1)
r2 = np.repeat(r2, pad, axis=1)
self.im = np.concatenate((r1, self.im, r2), axis=1)
self.im = self.im.astype('float32')
def normalize(self,style='01'):
im = self.im
for i in range(im.shape[-1]):
im[:,:,i]=(im[:,:,i]-im[:,:,i].min())/(im[:,:,i].max()-im[:,:,i].min())
if style == '-11':
im = im*2-1
def locate_sample(self):
sam = []
for i in range(self.cls):
_xy = np.array(np.where(self.gt==i)).T
_sam = np.concatenate([_xy,i*np.ones([_xy.shape[0],1])],axis=-1)
try:
sam = np.concatenate([sam,_sam],axis=0)
except:
sam = _sam
self.sample = sam.astype(int)
def get_patch(self, xy):
d = self.patch//2
x = xy[0]
y = xy[1]
try:
self.im[x][y]
except IndexError:
return []
x += d
y += d
sam = self.im[(x - d):(x + d + 1), (y - d):(y + d + 1)]
return np.array(sam)
def train_sample(self,pn):
x_train,y_train = [],[]
self.locate_sample()
_samp = self.sample
for _cls in range(self.cls):
_xy = _samp[_samp[:,2]==_cls]
np.random.shuffle(_xy)
_xy = _xy[:pn,:]
for xy in _xy:
self.gt[xy[0],xy[1]] = 255 # !!
#
x_train.append(self.get_patch(xy[:-1]))
y_train.append(xy[-1])
# print(_xy)
x_train,y_train = np.array(x_train), np.array(y_train)
idx = np.random.permutation(x_train.shape[0])
x_train = x_train[idx]
y_train = y_train[idx]
return x_train,y_train.astype(int)
def test_sample(self):
x_test,y_test = [],[]
self.locate_sample()
_samp = self.sample
for _cls in range(self.cls):
_xy = _samp[_samp[:,2]==_cls]
np.random.shuffle(_xy)
for xy in _xy:
x_test.append(self.get_patch(xy[:-1]))
y_test.append(xy[-1])
return np.array(x_test), np.array(y_test)
def all_sample(self):
imx,imy = self.gt.shape
sample = []
for i in range(imx):
for j in range(imy):
sample.append(self.get_patch(np.array([i,j])))
return np.array(sample)
def all_sample_light(self,clip=0,bs=10):
imx,imy = self.gt.shape
imz = self.im.shape[-1]
patch = self.patch
# fp = np.memmap('allsample' + str(clip) + '.h5', dtype='float32', mode='w+', shape=(imgx*self.IMGY,5,5,bs))
fp = np.zeros([imx*imy,patch,patch,imz])
countnum = 0
for i in range(imx*clip,imx*(clip+1)):
for j in range(imy):
xy = np.array([i,j])
fp[countnum,:,:,:] = self.get_patch(xy)
countnum += 1
return fp
def all_sample_row_hd(self,sub=0):
imx,imy = self.gt.shape
imz = self.im.shape[-1]
patch = self.patch
# fp = np.memmap('allsample' + str(clip) + '.h5', dtype='float32', mode='w+', shape=(imgx*self.IMGY,5,5,bs))
fp = np.zeros([imx*imy,patch,patch,imz])
countnum = 0
for i in range(sub):
for j in range(imy):
xy = np.array([i,j])
fp[countnum,:,:,:] = self.get_patch(xy)
countnum += 1
return fp
def all_sample_row(self,sub=0):
imx,imy = self.gt.shape
fp = []
for j in range(imy):
xy = np.array([sub,j])
fp.append(self.get_patch(xy))
return np.array(fp)
def all_sample_heavy(self,name,clip=0,bs=10):
imx,imy = self.gt.shape
imz = self.im.shape[-1]
patch = self.patch
try:
fp = np.memmap(name, dtype='float32', mode='w+', shape=(imx*imy,patch,patch,imz))
except:
fp = np.memmap(name, dtype='float32', mode='r', shape=(imx*imy,patch,patch,imz))
# fp = np.zeros([imx*imy,patch,patch,imz])
countnum = 0
for i in range(imx*clip,imx*(clip+1)):
for j in range(imy):
xy = np.array([i,j])
fp[countnum,:,:,:] = self.get_patch(xy)
countnum += 1
return fp
def read_all_sample(self,name,clip=0,bs=10):
imx,imy = self.gt.shape
imz = self.im.shape[-1]
patch = self.patch
fp = np.memmap(name, dtype='float32', mode='r', shape=(imx*imy,patch,patch,imz))
return fp
def locate_obj(self,seg):
obj = {}
for i in range(seg.min(),seg.max()+1):
obj[str(i)] = np.where(seg==i)
self.obj = obj
self.seg = seg
def obpc(seg,cmap,obj):
pcmap = copy.deepcopy(cmap)
for (k,v) in obj.items():
tmplabel = stats.mode(cmap[v])[0]
pcmap[v] = tmplabel
return pcmap
def cfm(pre, ref, ncl=9):
if ref.min() != 0:
print('warning: label should begin with 0 !!')
return
nsize = ref.shape[0]
cf = np.zeros((ncl,ncl))
for i in range(nsize):
cf[pre[i], ref[i]] += 1
tmp1 = 0
for j in range(ncl):
tmp1 = tmp1 + (cf[j,:].sum()/nsize)*(cf[:,j].sum()/nsize)
cfm = np.zeros((ncl+2,ncl+1))
cfm[:-2,:-1] = cf
oa = 0
for i in range(ncl):
if cf[i,:].sum():
cfm[i,ncl] = cf[i,i]/cf[i,:].sum()
if cf[:,i].sum():
cfm[ncl,i] = cf[i,i]/cf[:,i].sum()
oa += cf[i,i]
cfm[-1, 0] = oa/nsize
cfm[-1, 1] = (cfm[-1, 0]-tmp1)/(1-tmp1)
cfm[-1, 2] = cfm[ncl,:-1].mean()
print('oa: ', format(cfm[-1,0],'.5'), ' kappa: ', format(cfm[-1,1],'.5'),
' mean: ', format(cfm[-1,2],'.5'))
return cfm
def gtcfm(pre,gt,ncl):
if gt.max()==255:
print('warning: max 255 !!')
cf = np.zeros([ncl,ncl])
for i in range(gt.shape[0]):
for j in range(gt.shape[1]):
if gt[i,j]:
cf[pre[i,j]-1,gt[i,j]-1] += 1
tmp1 = 0
nsize = np.sum(gt!=0)
for j in range(ncl):
tmp1 = tmp1 + (cf[j,:].sum()/nsize)*(cf[:,j].sum()/nsize)
cfm = np.zeros((ncl+2,ncl+1))
cfm[:-2,:-1] = cf
oa = 0
for i in range(ncl):
if cf[i,:].sum():
cfm[i,ncl] = cf[i,i]/cf[i,:].sum()
if cf[:,i].sum():
cfm[ncl,i] = cf[i,i]/cf[:,i].sum()
oa += cf[i,i]
cfm[-1, 0] = oa/nsize
cfm[-1, 1] = (cfm[-1, 0]-tmp1)/(1-tmp1)
cfm[-1, 2] = cfm[ncl,:-1].mean()
print('oa: ', format(cfm[-1,0],'.5'), ' kappa: ', format(cfm[-1,1],'.5'),
' mean: ', format(cfm[-1,2],'.5'))
return cfm
def svm(trainx,trainy):
cost = []
gamma = []
for i in range(-5,16,2):
cost.append(np.power(2.0,i))
for i in range(-15,4,2):
gamma.append(np.power(2.0,i))
parameters = {'C':cost,'gamma':gamma}
svm = SVC(verbose=0,kernel='rbf')
clf = GridSearchCV(svm, parameters,cv=3)
p = clf.fit(trainx, trainy)
print(clf.best_params_)
bestc = clf.best_params_['C']
bestg = clf.best_params_['gamma']
tmpc = [-1.75,-1.5,-1.25,-1,-0.75,-0.5,-0.25,0.0,
0.25,0.5,0.75,1.0,1.25,1.5,1.75]
cost = []
gamma=[]
for i in tmpc:
cost.append(bestc*np.power(2.0,i))
gamma.append(bestg*np.power(2.0,i))
parameters = {'C':cost,'gamma':gamma}
svm = SVC(verbose=0,kernel='rbf')
clf = GridSearchCV(svm, parameters,cv=3)
p = clf.fit(trainx, trainy)
print(clf.best_params_)
p2 = clf.best_estimator_
return p2
def svm_rbf(trainx,trainy):
cost = []
gamma = []
for i in range(-3,10,2):
cost.append(np.power(2.0,i))
for i in range(-5,4,2):
gamma.append(np.power(2.0,i))
parameters = {'C':cost,'gamma':gamma}
svm = SVC(verbose=0,kernel='rbf')
clf = GridSearchCV(svm, parameters,cv=3)
clf.fit(trainx, trainy)
#print(clf.best_params_)
bestc = clf.best_params_['C']
bestg = clf.best_params_['gamma']
tmpc = [-1.75,-1.5,-1.25,-1,-0.75,-0.5,-0.25,0.0,
0.25,0.5,0.75,1.0,1.25,1.5,1.75]
cost = []
gamma=[]
for i in tmpc:
cost.append(bestc*np.power(2.0,i))
gamma.append(bestg*np.power(2.0,i))
parameters = {'C':cost,'gamma':gamma}
svm = SVC(verbose=0,kernel='rbf')
clf = GridSearchCV(svm, parameters,cv=3)
clf.fit(trainx, trainy)
#print(clf.best_params_)
p = clf.best_estimator_
return p
def rf(trainx,trainy,sim=1,nj=1):
nest = []
nfea = []
for i in range(20, 201, 20):
nest.append(i)
if sim:
for i in range(1,int(trainx.shape[-1])):
nfea.append(i)
parameters = {'n_estimators':nest,'max_features':nfea}
else:
parameters = {'n_estimators':nest}
rf = RandomForestClassifier(n_jobs=nj,verbose=0,oob_score=False)
clf = GridSearchCV(rf, parameters, cv=3)
p = clf.fit(trainx, trainy)
p2 = clf.best_estimator_
return p2
def GNB(trainx,trainy):
clf = GaussianNB()
p = clf.fit(trainx, trainy)
return p
def svm_linear(trainx,trainy):
cost = []
for i in range(-3,10,2):
cost.append(np.power(2.0,i))
parameters = {'C':cost}
svm = SVC(verbose=0,kernel='linear')
clf = GridSearchCV(svm, parameters,cv=3)
clf.fit(trainx, trainy)
#print(clf.best_params_)
bestc = clf.best_params_['C']
tmpc = [-1.75,-1.5,-1.25,-1,-0.75,-0.5,-0.25,0.0,
0.25,0.5,0.75,1.0,1.25,1.5,1.75]
cost = []
for i in tmpc:
cost.append(bestc*np.power(2.0,i))
parameters = {'C':cost}
svm = SVC(verbose=0,kernel='linear')
clf = GridSearchCV(svm, parameters,cv=3)
clf.fit(trainx, trainy)
p = clf.best_estimator_
return p
def make_sample(sample, label):
a = np.flip(sample,1)
b = np.flip(sample,2)
c = np.flip(b,1)
newsample = np.concatenate((a,b,c,sample),axis=0)
newlabel = np.concatenate((label,label,label,label),axis=0)
return newsample, newlabel
def save_cmap(img, cmap, fname):
sizes = np.shape(img)
height = float(sizes[0])
width = float(sizes[1])
fig = plt.figure()
fig.set_size_inches(width/height, 1, forward=False)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
ax.imshow(img, cmap=cmap)
plt.savefig(fname, dpi = height)
plt.close()