forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
minimum_spanning_tree_prims.py
116 lines (97 loc) · 3.75 KB
/
minimum_spanning_tree_prims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import sys
from collections import defaultdict
def PrimsAlgorithm(l): # noqa: E741
nodePosition = []
def get_position(vertex):
return nodePosition[vertex]
def set_position(vertex, pos):
nodePosition[vertex] = pos
def top_to_bottom(heap, start, size, positions):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
m = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
m = 2 * start + 1
else:
m = 2 * start + 2
if heap[m] < heap[start]:
temp, temp1 = heap[m], positions[m]
heap[m], positions[m] = heap[start], positions[start]
heap[start], positions[start] = temp, temp1
temp = get_position(positions[m])
set_position(positions[m], get_position(positions[start]))
set_position(positions[start], temp)
top_to_bottom(heap, m, size, positions)
# Update function if value of any node in min-heap decreases
def bottom_to_top(val, index, heap, position):
temp = position[index]
while index != 0:
if index % 2 == 0:
parent = int((index - 2) / 2)
else:
parent = int((index - 1) / 2)
if val < heap[parent]:
heap[index] = heap[parent]
position[index] = position[parent]
set_position(position[parent], index)
else:
heap[index] = val
position[index] = temp
set_position(temp, index)
break
index = parent
else:
heap[0] = val
position[0] = temp
set_position(temp, 0)
def heapify(heap, positions):
start = len(heap) // 2 - 1
for i in range(start, -1, -1):
top_to_bottom(heap, i, len(heap), positions)
def deleteMinimum(heap, positions):
temp = positions[0]
heap[0] = sys.maxsize
top_to_bottom(heap, 0, len(heap), positions)
return temp
visited = [0 for i in range(len(l))]
Nbr_TV = [-1 for i in range(len(l))] # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
Distance_TV = [] # Heap of Distance of vertices from their neighboring vertex
Positions = []
for x in range(len(l)):
p = sys.maxsize
Distance_TV.append(p)
Positions.append(x)
nodePosition.append(x)
TreeEdges = []
visited[0] = 1
Distance_TV[0] = sys.maxsize
for x in l[0]:
Nbr_TV[x[0]] = 0
Distance_TV[x[0]] = x[1]
heapify(Distance_TV, Positions)
for i in range(1, len(l)):
vertex = deleteMinimum(Distance_TV, Positions)
if visited[vertex] == 0:
TreeEdges.append((Nbr_TV[vertex], vertex))
visited[vertex] = 1
for v in l[vertex]:
if visited[v[0]] == 0 and v[1] < Distance_TV[get_position(v[0])]:
Distance_TV[get_position(v[0])] = v[1]
bottom_to_top(v[1], get_position(v[0]), Distance_TV, Positions)
Nbr_TV[v[0]] = vertex
return TreeEdges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
n = int(input("Enter number of vertices: ").strip())
e = int(input("Enter number of edges: ").strip())
adjlist = defaultdict(list)
for x in range(e):
l = [int(x) for x in input().strip().split()] # noqa: E741
adjlist[l[0]].append([l[1], l[2]])
adjlist[l[1]].append([l[0], l[2]])
print(PrimsAlgorithm(adjlist))