Skip to content

Latest commit

 

History

History
167 lines (139 loc) · 5.47 KB

RELEASE.md

File metadata and controls

167 lines (139 loc) · 5.47 KB

Release 0.3.1

Bug Fixes

  • fix feature scale bugs in v0.3
  • fix federated feature selection bugs in v0.3

Release 0.3

Major Features and Improvements

FederatedML

  • Support OneVsALL for multi-label classification task
  • Add trash-recycle in Hetero Logistic Regression
  • Add numeric stable for sigmoid and log_logistic function.
  • Support different calculation mode in Hetero Logistic Regression and Hetero SecureBoost
  • Decouple Federated Feature Binning and Federated Feature Selection
  • Add feature importance calculation in Hetero SecureBoost
  • Add multi-host in Hetero SecureBoost
  • Support tag:value sparse format input data
  • Support output intersect-id with feature-instance in Intersection
  • Support OneHot encoding module.
  • Support bucket binning for Federated Feature Binning.
  • Support add, sub, mul, div ,gt, lt ,eq, etc mathematical operator on Fixed-Point data
  • Add authority validation for parameter setting

FATE-Serving

  • Add multi-level cache for multi-party inference result
  • Add startInferceJob and getInferenceResult interfaces to support the inference process asynchronization
  • Normalized inference return code
  • Real-time logging of inference summary logs and inferential detail logs
  • Improve the loading of the pre and post processing adapter and data access adapter for host

EggRoll

  • New computing and storage APIs
  • Stability optimizations
  • Performance optimizations
  • Storage usage improvements

Example

  • Add Mini-FederatedML test task example
  • Using task manager to submit distributed task for current examples

Bug Fixes and Other Changes

  • fix detect onehot max column overflow bug.
  • fix dataio dense format not reading host data header bug.
  • fix bugs of call of statistics function
  • fix bug for federated feature selection that at least one feature remains for each party
  • Not allowing so small batch size in LR module for safety consideration.
  • fix naming error in federated feature selection module.
  • Fix the bug of automated publishing model information in some extreme cases
  • Fixed some overflow bugs in fixed-point data
  • fix many other bugs.

Release 0.2

Major Features and Improvements

WorkFlow

  • Add Model PipleLine
  • Add Hetero Federated Feature Binning workflow
  • Add Hetero Federated Feature Selection workflow
  • Add hetero dnn workflow
  • Add intersection operator before train, predict and cross_validation

FederatedML

  • Support svm-light sparse format inputdata
  • Support tag sparse format inputdata
  • Add Hetero Federated Feature Binning
  • Add Hetero Federated Feature Selection
  • Add Feature Scaler: MinMaxScaler & StandardScaler
  • Add Feature Imputer for missing value filling
  • Add Data Statistic for datainstance
  • Support encoding and main calculation role configurable for RAW Intesection
  • Add Sampler: RandomSampler & StratifiedSampler
  • Support regression in SecureBoost
  • Support regression evaluation
  • Support Decentralized FTL
  • Add feature extracting by DNN
  • Change Model Format to ProtoBuf
  • Add abnormal parameter detection
  • Add abnormal input data detection

FATE-Serving(An online inference for federated learning models)

  • Dynamic Loading Federated Learning Models.
  • Real-time Prediction Using Federated Learning Models.

Model Management

  • Versioning
  • Reproducibility
  • Queries, Search

Task Manager

  • Add Load File/ Download File
  • Add Import ID from Local File
  • Add Start workflow
  • Add workflow Job Queue
  • Add Query Job Status
  • Add Get Runtime conf
  • Add Delete Task

EggRoll

  • Add Node Manager for multiprocessor to improve distributed computing performance
  • Add C++ overwrite storage service
  • Add eggroll cleanup API

Deploy

  • Add auto-deploy
  • Improved deployment documentation

Example

  • Add Hetero Federated Feature Binning example
  • Add Hetero Federated Feature Selection example
  • Add Hetero DNN example
  • Add toy example
  • Add task manager examples
  • Add Serving example

Bug Fixes and Other Changes

  • Hetero-LR Minibath bugfixed
  • Gradient Average bugfixed
  • One-second latency for proxy bugfixed
  • Training flowid bugfixed
  • Many bugfixes
  • Many performance improvements
  • Many documentation fixes

Release 0.1

Initial release of FATE.

Major Features

WorkFlow

  • Support Intersection workflow
  • Support Train workflow
  • Support Predict workflow
  • Support Validation workflow
  • Support Model Load and Save workflow

FederatedML

  • Support Distributed Secure Intersection and Raw Intersection for Sample Alignment
  • Support Distributed Homogeneous LR and Heterogeneous LR
  • Support Distributed SecureBoost
  • Support Distributed Secure Federated Transfer Learning
  • Support Binary and Multi-Class Evaluation
  • Support Model Cross-Validation
  • Supprt Mini-Batch
  • Support L1, L2 Regularizers
  • Support Multi-Party Homogeneous FederatedAggregator
  • Support Multi-Party Heterogeneous FederatedAggregator
  • Support Partially Homomorphic Encryption MPC Protocol

Architecture

  • Initial release of Computing APIs
  • Initial release of Storage APIs
  • Initial release of Federation APIs
  • Initial release of cross-site network communication (i.e. 'Federation')
  • Initial release of Standalone runtime, including computing engine and k-v storage
  • Initial release of Distributed runtime, including distributed computing engine, distributed k-v storage, metadata management and intra-site/cross-site network communication
  • Support cross-site heterogenous infrastructure
  • Initial support of modeling and inference

Deploy

  • Support standalone (docker & manual) deployment
  • Support cluster deployment