forked from AntixK/PyTorch-VAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
info_vae.py
256 lines (210 loc) · 8.34 KB
/
info_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
from models import BaseVAE
from torch import nn
from torch.nn import functional as F
from .types_ import *
class InfoVAE(BaseVAE):
def __init__(self,
in_channels: int,
latent_dim: int,
hidden_dims: List = None,
alpha: float = -0.5,
beta: float = 5.0,
reg_weight: int = 100,
kernel_type: str = 'imq',
latent_var: float = 2.,
**kwargs) -> None:
super(InfoVAE, self).__init__()
self.latent_dim = latent_dim
self.reg_weight = reg_weight
self.kernel_type = kernel_type
self.z_var = latent_var
assert alpha <= 0, 'alpha must be negative or zero.'
self.alpha = alpha
self.beta = beta
modules = []
if hidden_dims is None:
hidden_dims = [32, 64, 128, 256, 512]
# Build Encoder
for h_dim in hidden_dims:
modules.append(
nn.Sequential(
nn.Conv2d(in_channels, out_channels=h_dim,
kernel_size= 3, stride= 2, padding = 1),
nn.BatchNorm2d(h_dim),
nn.LeakyReLU())
)
in_channels = h_dim
self.encoder = nn.Sequential(*modules)
self.fc_mu = nn.Linear(hidden_dims[-1] * 4, latent_dim)
self.fc_var = nn.Linear(hidden_dims[-1] * 4, latent_dim)
# Build Decoder
modules = []
self.decoder_input = nn.Linear(latent_dim, hidden_dims[-1] * 4)
hidden_dims.reverse()
for i in range(len(hidden_dims) - 1):
modules.append(
nn.Sequential(
nn.ConvTranspose2d(hidden_dims[i],
hidden_dims[i + 1],
kernel_size=3,
stride = 2,
padding=1,
output_padding=1),
nn.BatchNorm2d(hidden_dims[i + 1]),
nn.LeakyReLU())
)
self.decoder = nn.Sequential(*modules)
self.final_layer = nn.Sequential(
nn.ConvTranspose2d(hidden_dims[-1],
hidden_dims[-1],
kernel_size=3,
stride=2,
padding=1,
output_padding=1),
nn.BatchNorm2d(hidden_dims[-1]),
nn.LeakyReLU(),
nn.Conv2d(hidden_dims[-1], out_channels= 3,
kernel_size= 3, padding= 1),
nn.Tanh())
def encode(self, input: Tensor) -> List[Tensor]:
"""
Encodes the input by passing through the encoder network
and returns the latent codes.
:param input: (Tensor) Input tensor to encoder [N x C x H x W]
:return: (Tensor) List of latent codes
"""
result = self.encoder(input)
result = torch.flatten(result, start_dim=1)
# Split the result into mu and var components
# of the latent Gaussian distribution
mu = self.fc_mu(result)
log_var = self.fc_var(result)
return [mu, log_var]
def decode(self, z: Tensor) -> Tensor:
result = self.decoder_input(z)
result = result.view(-1, 512, 2, 2)
result = self.decoder(result)
result = self.final_layer(result)
return result
def reparameterize(self, mu: Tensor, logvar: Tensor) -> Tensor:
"""
Reparameterization trick to sample from N(mu, var) from
N(0,1).
:param mu: (Tensor) Mean of the latent Gaussian [B x D]
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
:return: (Tensor) [B x D]
"""
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps * std + mu
def forward(self, input: Tensor, **kwargs) -> List[Tensor]:
mu, log_var = self.encode(input)
z = self.reparameterize(mu, log_var)
return [self.decode(z), input, z, mu, log_var]
def loss_function(self,
*args,
**kwargs) -> dict:
recons = args[0]
input = args[1]
z = args[2]
mu = args[3]
log_var = args[4]
batch_size = input.size(0)
bias_corr = batch_size * (batch_size - 1)
kld_weight = kwargs['M_N'] # Account for the minibatch samples from the dataset
recons_loss =F.mse_loss(recons, input)
mmd_loss = self.compute_mmd(z)
kld_loss = torch.mean(-0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim=1), dim=0)
loss = self.beta * recons_loss + \
(1. - self.alpha) * kld_weight * kld_loss + \
(self.alpha + self.reg_weight - 1.)/bias_corr * mmd_loss
return {'loss': loss, 'Reconstruction_Loss':recons_loss, 'MMD': mmd_loss, 'KLD':-kld_loss}
def compute_kernel(self,
x1: Tensor,
x2: Tensor) -> Tensor:
# Convert the tensors into row and column vectors
D = x1.size(1)
N = x1.size(0)
x1 = x1.unsqueeze(-2) # Make it into a column tensor
x2 = x2.unsqueeze(-3) # Make it into a row tensor
"""
Usually the below lines are not required, especially in our case,
but this is useful when x1 and x2 have different sizes
along the 0th dimension.
"""
x1 = x1.expand(N, N, D)
x2 = x2.expand(N, N, D)
if self.kernel_type == 'rbf':
result = self.compute_rbf(x1, x2)
elif self.kernel_type == 'imq':
result = self.compute_inv_mult_quad(x1, x2)
else:
raise ValueError('Undefined kernel type.')
return result
def compute_rbf(self,
x1: Tensor,
x2: Tensor,
eps: float = 1e-7) -> Tensor:
"""
Computes the RBF Kernel between x1 and x2.
:param x1: (Tensor)
:param x2: (Tensor)
:param eps: (Float)
:return:
"""
z_dim = x2.size(-1)
sigma = 2. * z_dim * self.z_var
result = torch.exp(-((x1 - x2).pow(2).mean(-1) / sigma))
return result
def compute_inv_mult_quad(self,
x1: Tensor,
x2: Tensor,
eps: float = 1e-7) -> Tensor:
"""
Computes the Inverse Multi-Quadratics Kernel between x1 and x2,
given by
k(x_1, x_2) = \sum \frac{C}{C + \|x_1 - x_2 \|^2}
:param x1: (Tensor)
:param x2: (Tensor)
:param eps: (Float)
:return:
"""
z_dim = x2.size(-1)
C = 2 * z_dim * self.z_var
kernel = C / (eps + C + (x1 - x2).pow(2).sum(dim = -1))
# Exclude diagonal elements
result = kernel.sum() - kernel.diag().sum()
return result
def compute_mmd(self, z: Tensor) -> Tensor:
# Sample from prior (Gaussian) distribution
prior_z = torch.randn_like(z)
prior_z__kernel = self.compute_kernel(prior_z, prior_z)
z__kernel = self.compute_kernel(z, z)
priorz_z__kernel = self.compute_kernel(prior_z, z)
mmd = prior_z__kernel.mean() + \
z__kernel.mean() - \
2 * priorz_z__kernel.mean()
return mmd
def sample(self,
num_samples:int,
current_device: int, **kwargs) -> Tensor:
"""
Samples from the latent space and return the corresponding
image space map.
:param num_samples: (Int) Number of samples
:param current_device: (Int) Device to run the model
:return: (Tensor)
"""
z = torch.randn(num_samples,
self.latent_dim)
z = z.to(current_device)
samples = self.decode(z)
return samples
def generate(self, x: Tensor, **kwargs) -> Tensor:
"""
Given an input image x, returns the reconstructed image
:param x: (Tensor) [B x C x H x W]
:return: (Tensor) [B x C x H x W]
"""
return self.forward(x)[0]