forked from The-OpenROAD-Project/OpenSTA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CycleAccting.cc
341 lines (311 loc) · 11.1 KB
/
CycleAccting.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// OpenSTA, Static Timing Analyzer
// Copyright (c) 2020, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "CycleAccting.hh"
#include <cmath> // ceil
#include <algorithm> // max
#include "Debug.hh"
#include "Fuzzy.hh"
#include "Units.hh"
#include "TimingRole.hh"
#include "Clock.hh"
namespace sta {
CycleAccting::CycleAccting(const ClockEdge *src,
const ClockEdge *tgt) :
src_(src),
tgt_(tgt),
max_cycles_exceeded_(false)
{
for (int i = 0; i <= TimingRole::index_max; i++) {
delay_[i] = MinMax::min()->initValue();
required_[i] = 0;
src_cycle_[i] = 0;
tgt_cycle_[i] = 0;
}
}
void
CycleAccting::findDelays(StaState *sta)
{
Debug *debug = sta->debug();
const Unit *time_unit = sta->units()->timeUnit();
debugPrint(debug, "cycle_acct", 1, "%s -> %s",
src_->name(),
tgt_->name());
const int setup_index = TimingRole::setup()->index();
const int latch_setup_index = TimingRole::latchSetup()->index();
const int data_check_setup_index = TimingRole::dataCheckSetup()->index();
const int hold_index = TimingRole::hold()->index();
const int gclk_hold_index = TimingRole::gatedClockHold()->index();
Clock *src_clk = src_->clock();
Clock *tgt_clk = tgt_->clock();
double tgt_opp_time1 = tgt_->opposite()->time();
double tgt_period = tgt_clk->period();
double src_period = src_clk->period();
if (tgt_period > 0.0 && src_period > 0.0) {
// If the clocks are related (ie, generated clock and its source) allow
// allow enough cycles to match up the common period.
int tgt_max_cycle;
if (tgt_period > src_period)
tgt_max_cycle = 100;
else {
int ratio = std::ceil(src_period / tgt_period);
tgt_max_cycle = std::max(ratio, 1000);
}
bool tgt_past_src = false;
bool src_past_tgt = false;
int tgt_cycle, src_cycle;
for (tgt_cycle = (tgt_->time() < tgt_period) ? 0 : -1;
tgt_cycle <= tgt_max_cycle;
tgt_cycle++) {
double tgt_cycle_start = tgt_cycle * tgt_period;
double tgt_time = tgt_cycle_start + tgt_->time();
double tgt_opp_time = tgt_cycle_start + tgt_opp_time1;
for (src_cycle = (src_->time() < src_period) ? 0 : -1;
;
src_cycle++) {
double src_cycle_start = src_cycle * src_period;
double src_time = src_cycle_start + src_->time();
// Make sure both setup and hold required are determined.
if (tgt_past_src && src_past_tgt
// Synchronicity achieved.
&& fuzzyEqual(src_cycle_start, tgt_cycle_start)) {
debugPrint(debug, "cycle_acct", 1, " setup = %s, required = %s",
time_unit->asString(delay_[setup_index]),
time_unit->asString(required_[setup_index]));
debugPrint(debug, "cycle_acct", 1, " hold = %s, required = %s",
time_unit->asString(delay_[hold_index]),
time_unit->asString(required_[hold_index]));
debugPrint(debug, "cycle_acct", 1,
" converged at src cycles = %d tgt cycles = %d",
src_cycle, tgt_cycle);
return;
}
if (fuzzyGreater(src_cycle_start, tgt_cycle_start + tgt_period)
&& src_past_tgt)
break;
debugPrint(debug, "cycle_acct", 2, " %s src cycle %d %s + %s = %s",
src_->name(),
src_cycle,
time_unit->asString(src_cycle_start),
time_unit->asString(src_->time()),
time_unit->asString(src_time));
debugPrint(debug, "cycle_acct", 2, " %s tgt cycle %d %s + %s = %s",
tgt_->name(),
tgt_cycle,
time_unit->asString(tgt_cycle_start),
time_unit->asString(tgt_->time()),
time_unit->asString(tgt_time));
// For setup checks, target has to be AFTER source.
if (fuzzyGreater(tgt_time, src_time)) {
tgt_past_src = true;
double delay = tgt_time - src_time;
if (fuzzyLess(delay, delay_[setup_index])) {
double required = tgt_time - src_cycle_start;
setSetupAccting(src_cycle, tgt_cycle, delay, required);
debugPrint(debug, "cycle_acct", 2,
" setup min delay = %s, required = %s",
time_unit->asString(delay_[setup_index]),
time_unit->asString(required_[setup_index]));
}
}
// Data check setup checks are zero cycle.
if (fuzzyLessEqual(tgt_time, src_time)) {
double setup_delay = src_time - tgt_time;
if (fuzzyLess(setup_delay, delay_[data_check_setup_index])) {
double setup_required = tgt_time - src_cycle_start;
setAccting(TimingRole::dataCheckSetup(), src_cycle, tgt_cycle,
setup_delay, setup_required);
double hold_required = tgt_time - (src_cycle_start + src_period);
double hold_delay = (src_period + src_time) - tgt_time;
setAccting(TimingRole::dataCheckHold(),
src_cycle + 1, tgt_cycle, hold_delay, hold_required);
}
}
// Latch setup cycle accting for the enable is the data clk edge
// closest to the disable (opposite) edge.
if (fuzzyGreater(tgt_opp_time, src_time)) {
double delay = tgt_opp_time - src_time;
if (fuzzyLess(delay, delay_[latch_setup_index])) {
double latch_tgt_time = tgt_time;
int latch_tgt_cycle = tgt_cycle;
// Enable time is the edge before the disable.
if (tgt_time > tgt_opp_time) {
latch_tgt_time -= tgt_period;
latch_tgt_cycle--;
}
double required = latch_tgt_time - src_cycle_start;
setAccting(TimingRole::latchSetup(),
src_cycle, latch_tgt_cycle, delay, required);
debugPrint(debug, "cycle_acct", 2,
" latch setup min delay = %s, required = %s",
time_unit->asString(delay_[latch_setup_index]),
time_unit->asString(required_[latch_setup_index]));
}
}
// For hold checks, target has to be BEFORE source.
if (fuzzyLessEqual(tgt_time, src_time)) {
double delay = src_time - tgt_time;
src_past_tgt = true;
if (fuzzyLess(delay, delay_[hold_index])) {
double required = tgt_time - src_cycle_start;
setHoldAccting(src_cycle, tgt_cycle, delay, required);
debugPrint(debug, "cycle_acct", 2,
" hold min delay = %s, required = %s",
time_unit->asString(delay_[hold_index]),
time_unit->asString(required_[hold_index]));
}
}
// Gated clock hold checks are in the same cycle as the
// setup check.
if (fuzzyLessEqual(tgt_opp_time, src_time)) {
double delay = src_time - tgt_time;
if (fuzzyLess(delay, delay_[gclk_hold_index])) {
double required = tgt_time - src_cycle_start;
setAccting(TimingRole::gatedClockHold(),
src_cycle, tgt_cycle, delay, required);
debugPrint(debug, "cycle_acct", 2,
" gated clk hold min delay = %s, required = %s",
time_unit->asString(delay_[gclk_hold_index]),
time_unit->asString(required_[gclk_hold_index]));
}
}
}
}
max_cycles_exceeded_ = true;
debugPrint(debug, "cycle_acct", 1,
" max cycles exceeded after %d src cycles, %d tgt_cycles",
src_cycle, tgt_cycle);
}
else if (tgt_period > 0.0)
findDefaultArrivalSrcDelays();
}
void
CycleAccting::setSetupAccting(int src_cycle,
int tgt_cycle,
float delay,
float req)
{
setAccting(TimingRole::setup(), src_cycle, tgt_cycle, delay, req);
setAccting(TimingRole::outputSetup(), src_cycle, tgt_cycle, delay, req);
setAccting(TimingRole::gatedClockSetup(), src_cycle, tgt_cycle, delay, req);
setAccting(TimingRole::recovery(), src_cycle, tgt_cycle, delay, req);
}
void
CycleAccting::setHoldAccting(int src_cycle,
int tgt_cycle,
float delay,
float req)
{
setAccting(TimingRole::hold(), src_cycle, tgt_cycle, delay, req);
setAccting(TimingRole::outputHold(), src_cycle, tgt_cycle, delay, req);
setAccting(TimingRole::removal(), src_cycle, tgt_cycle, delay, req);
setAccting(TimingRole::latchHold(), src_cycle, tgt_cycle, delay, req);
}
void
CycleAccting::setAccting(TimingRole *role,
int src_cycle,
int tgt_cycle,
float delay,
float req)
{
int index = role->index();
src_cycle_[index] = src_cycle;
tgt_cycle_[index] = tgt_cycle;
delay_[index] = delay;
required_[index] = req;
}
void
CycleAccting::findDefaultArrivalSrcDelays()
{
const Clock *tgt_clk = tgt_->clock();
float tgt_time = tgt_->time();
float tgt_period = tgt_clk->period();
// Unclocked arrival setup check is in cycle zero.
if (tgt_time > tgt_period)
setDefaultSetupAccting(0, 0, tgt_time - tgt_period, tgt_time - tgt_period);
else if (tgt_time > 0.0)
setDefaultSetupAccting(0, 0, tgt_time, tgt_time);
else
setDefaultSetupAccting(0, 1, tgt_period, tgt_period);
setDefaultHoldAccting(0, 0, 0.0, tgt_time);
}
void
CycleAccting::setDefaultSetupAccting(int src_cycle,
int tgt_cycle,
float delay,
float req)
{
setSetupAccting(src_cycle, tgt_cycle, delay, req);
setAccting(TimingRole::latchSetup(), src_cycle, tgt_cycle, delay, req);
setAccting(TimingRole::dataCheckSetup(), src_cycle, tgt_cycle, delay, req);
}
void
CycleAccting::setDefaultHoldAccting(int src_cycle,
int tgt_cycle,
float delay,
float req)
{
setHoldAccting(src_cycle, tgt_cycle, delay, req);
setAccting(TimingRole::dataCheckHold(), src_cycle, tgt_cycle, delay, req);
}
float
CycleAccting::requiredTime(const TimingRole *check_role)
{
return required_[check_role->index()];
}
float
CycleAccting::sourceTimeOffset(const TimingRole *check_role)
{
return sourceCycle(check_role) * src_->clock()->period();
}
int
CycleAccting::sourceCycle(const TimingRole *check_role)
{
return src_cycle_[check_role->index()];
}
int
CycleAccting::targetCycle(const TimingRole *check_role)
{
return tgt_cycle_[check_role->index()];
}
float
CycleAccting::targetTimeOffset(const TimingRole *check_role)
{
return targetCycle(check_role) * tgt_->clock()->period();
}
////////////////////////////////////////////////////////////////
bool
CycleAcctingLess::operator()(const CycleAccting *acct1,
const CycleAccting *acct2) const
{
int src_index1 = acct1->src()->index();
int src_index2 = acct2->src()->index();
return src_index1 < src_index2
|| (src_index1 == src_index2
&& acct1->target()->index() < acct2->target()->index());
}
size_t
CycleAcctingHash::operator()(const CycleAccting *acct) const
{
return hashSum(acct->src()->index(), acct->target()->index());
}
bool
CycleAcctingEqual::operator()(const CycleAccting *acct1,
const CycleAccting *acct2) const
{
return acct1->src() == acct2->src()
&& acct1->target() == acct2->target();
}
} // namespace