forked from jorgecasas/php-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLPRegressor.php
80 lines (66 loc) · 1.9 KB
/
MLPRegressor.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
<?php
declare(strict_types=1);
namespace Phpml\Regression;
use Phpml\Helper\Predictable;
use Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\Network\MultilayerPerceptron;
use Phpml\NeuralNetwork\Training\Backpropagation;
class MLPRegressor implements Regression
{
use Predictable;
/**
* @var MultilayerPerceptron
*/
private $perceptron;
/**
* @var array
*/
private $hiddenLayers;
/**
* @var float
*/
private $desiredError;
/**
* @var int
*/
private $maxIterations;
/**
* @var ActivationFunction
*/
private $activationFunction;
/**
* @param array $hiddenLayers
* @param float $desiredError
* @param int $maxIterations
* @param ActivationFunction $activationFunction
*/
public function __construct(array $hiddenLayers = [10], float $desiredError = 0.01, int $maxIterations = 10000, ActivationFunction $activationFunction = null)
{
$this->hiddenLayers = $hiddenLayers;
$this->desiredError = $desiredError;
$this->maxIterations = $maxIterations;
$this->activationFunction = $activationFunction;
}
/**
* @param array $samples
* @param array $targets
*/
public function train(array $samples, array $targets)
{
$layers = $this->hiddenLayers;
array_unshift($layers, count($samples[0]));
$layers[] = count($targets[0]);
$this->perceptron = new MultilayerPerceptron($layers, $this->activationFunction);
$trainer = new Backpropagation($this->perceptron);
$trainer->train($samples, $targets, $this->desiredError, $this->maxIterations);
}
/**
* @param array $sample
*
* @return array
*/
protected function predictSample(array $sample)
{
return $this->perceptron->setInput($sample)->getOutput();
}
}