forked from Kedreamix/Linly-Talker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWav2Lip.py
283 lines (228 loc) · 11.9 KB
/
Wav2Lip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import sys
sys.path.append('./')
import numpy as np
import cv2, os, subprocess
from tqdm import tqdm
import torch
import platform
from src.models import Wav2Lip as wav2lip_mdoel
from src.utils import audio
import face_detection
class Wav2Lip:
def __init__(self, path = 'checkpoints/wav2lip.pth'):
self.fps = 25
self.resize_factor = 1
self.mel_step_size = 16
self.static = False
self.img_size = 96
self.face_det_batch_size = 8
self.box = [-1, -1, -1, -1]
self.pads = [0, 10, 0, 0]
self.nosmooth = False
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model = self.load_model(path)
def load_model(self, checkpoint_path):
model = wav2lip_mdoel()
print("Load checkpoint from: {}".format(checkpoint_path))
if self.device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(self.device)
return model.eval()
# def predict(self, face_path, audio_file, batch_size):
# if face_path.split('.')[1] in ['jpg', 'png', 'jpeg']:
# return self.predict_img(face_path, audio_file, batch_size)
# elif face_path.split('.')[1] == 'mp4':
# return self.predict_video(face_path, audio_file, batch_size)
# else:
# return None
def predict(self, face, audio_file, batch_size, fps = 25,
enhance = False, resize_factor = 1, rotate = False, crop = [-1, -1, -1, -1]):
os.makedirs('results', exist_ok=True)
os.makedirs('temp', exist_ok=True)
if not os.path.isfile(face):
raise ValueError('--face argument must be a valid path to video/image file')
elif face.split('.')[1] in ['jpg', 'png', 'jpeg']:
full_frames = [cv2.imread(face)]
fps = fps
else:
video_stream = cv2.VideoCapture(face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
print('Reading video frames...')
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if resize_factor > 1:
frame = cv2.resize(frame, (frame.shape[1]//resize_factor, frame.shape[0]//resize_factor))
if rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
print ("Number of frames available for inference: "+str(len(full_frames)))
if not audio_file.endswith('.wav'):
print('Extracting raw audio...')
command = 'ffmpeg -y -i {} -strict -2 {}'.format(audio_file, 'temp/temp.wav')
subprocess.call(command, shell=True)
audio_file = 'temp/temp.wav'
wav = audio.load_wav(audio_file, 16000)
mel = audio.melspectrogram(wav)
print(mel.shape)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_chunks = []
mel_idx_multiplier = 80./self.fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + self.mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - self.mel_step_size:])
break
mel_chunks.append(mel[:, start_idx : start_idx + self.mel_step_size])
i += 1
print("Length of mel chunks: {}".format(len(mel_chunks)))
full_frames = full_frames[:len(mel_chunks)]
batch_size = batch_size
gen = self.datagen(full_frames.copy(), mel_chunks, batch_size)
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen,
total=int(np.ceil(float(len(mel_chunks))/batch_size)))):
if i == 0:
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('temp/result.avi',
cv2.VideoWriter_fourcc(*'DIVX'), self.fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(self.device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(self.device)
with torch.no_grad():
pred = self.model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
out.write(f)
out.release()
if enhance:
import imageio
from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list
enhancer = 'gfpgan'
background_enhancer = None
video_save_dir = 'results'
video_name_enhance = 'res_enhanced.mp4'
enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhance)
av_path_enhancer = os.path.join(video_save_dir, video_name_enhance)
return_path = av_path_enhancer
full_video_path = 'temp/result.avi'
try:
enhanced_images_gen_with_len = enhancer_generator_with_len(full_video_path, method=enhancer, bg_upsampler=background_enhancer)
imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(self.fps))
except:
enhanced_images_gen_with_len = enhancer_list(full_video_path, method=enhancer, bg_upsampler=background_enhancer)
imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(self.fps))
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_file, enhanced_path, 'results/example_answer.mp4')
subprocess.call(command, shell=platform.system() != 'Windows')
else:
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_file, 'temp/result.avi', 'results/example_answer.mp4')
subprocess.call(command, shell=platform.system() != 'Windows')
return 'results/example_answer.mp4'
def datagen(self, frames, mels, batch_size):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if self.box[0] == -1:
if not self.static:
face_det_results = self.face_detect(frames) # BGR2RGB for CNN face detection
else:
face_det_results = self.face_detect([frames[0]])
else:
print('Using the specified bounding box instead of face detection...')
y1, y2, x1, x2 = self.box
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for i, m in enumerate(mels):
idx = 0 if self.static else i%len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (self.img_size, self.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, self.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, self.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
def face_detect(self, images):
try:
detector = face_detection.FaceAlignment(face_detection.LandmarksType.TWO_D,
flip_input=False, device=self.device)
except:
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=self.device)
batch_size = self.face_det_batch_size
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size)):
# img_batch = torch.tensor(np.array(images[i:i + batch_size]), device=self.device)
# img_batch = img_batch.permute(0, 3, 1, 2)
# print(img_batch.shape, type(img_batch))
# predictions.extend(detector.get_landmarks_from_batch(img_batch))
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except Exception as e:
print("Error in face detection: {}".format(e))
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = self.pads
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not self.nosmooth: boxes = self.get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
def get_smoothened_boxes(self, boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
if __name__ == '__main__':
current_dir = './'
wav2lip = Wav2Lip(os.path.join(current_dir,'checkpoints/wav2lip.pth'))
# wav2lip.predict('/home/dengkaijun/workdirs/Linly-Talker/TFG/results/test.mp4', os.path.join(current_dir,'answer.wav'), batch_size = 2, enhance=False)
wav2lip.predict(os.path.join(current_dir,'inputs/example.png'), os.path.join(current_dir,'answer.wav'), batch_size = 2, enhance=False)
wav2lip.predict(os.path.join(current_dir,'inputs/example.png'), os.path.join(current_dir,'answer.wav'), batch_size = 2, enhance=True)