forked from prometheus/prometheus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.go
1307 lines (1158 loc) · 33.7 KB
/
functions.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"math"
"regexp"
"sort"
"strconv"
"strings"
"time"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/pkg/labels"
)
// Function represents a function of the expression language and is
// used by function nodes.
type Function struct {
Name string
ArgTypes []ValueType
Variadic int
ReturnType ValueType
Call func(ev *evaluator, args Expressions) Value
}
// === time() float64 ===
func funcTime(ev *evaluator, args Expressions) Value {
return Scalar{
V: float64(ev.Timestamp / 1000),
T: ev.Timestamp,
}
}
// extrapolatedRate is a utility function for rate/increase/delta.
// It calculates the rate (allowing for counter resets if isCounter is true),
// extrapolates if the first/last sample is close to the boundary, and returns
// the result as either per-second (if isRate is true) or overall.
func extrapolatedRate(ev *evaluator, arg Expr, isCounter bool, isRate bool) Value {
ms := arg.(*MatrixSelector)
var (
matrix = ev.evalMatrix(ms)
rangeStart = ev.Timestamp - durationMilliseconds(ms.Range+ms.Offset)
rangeEnd = ev.Timestamp - durationMilliseconds(ms.Offset)
resultVector = make(Vector, 0, len(matrix))
)
for _, samples := range matrix {
// No sense in trying to compute a rate without at least two points. Drop
// this Vector element.
if len(samples.Points) < 2 {
continue
}
var (
counterCorrection float64
lastValue float64
)
for _, sample := range samples.Points {
if isCounter && sample.V < lastValue {
counterCorrection += lastValue
}
lastValue = sample.V
}
resultValue := lastValue - samples.Points[0].V + counterCorrection
// Duration between first/last samples and boundary of range.
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
// Counters cannot be negative. If we have any slope at
// all (i.e. resultValue went up), we can extrapolate
// the zero point of the counter. If the duration to the
// zero point is shorter than the durationToStart, we
// take the zero point as the start of the series,
// thereby avoiding extrapolation to negative counter
// values.
durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
if durationToZero < durationToStart {
durationToStart = durationToZero
}
}
// If the first/last samples are close to the boundaries of the range,
// extrapolate the result. This is as we expect that another sample
// will exist given the spacing between samples we've seen thus far,
// with an allowance for noise.
extrapolationThreshold := averageDurationBetweenSamples * 1.1
extrapolateToInterval := sampledInterval
if durationToStart < extrapolationThreshold {
extrapolateToInterval += durationToStart
} else {
extrapolateToInterval += averageDurationBetweenSamples / 2
}
if durationToEnd < extrapolationThreshold {
extrapolateToInterval += durationToEnd
} else {
extrapolateToInterval += averageDurationBetweenSamples / 2
}
resultValue = resultValue * (extrapolateToInterval / sampledInterval)
if isRate {
resultValue = resultValue / ms.Range.Seconds()
}
resultVector = append(resultVector, Sample{
Metric: dropMetricName(samples.Metric),
Point: Point{V: resultValue, T: ev.Timestamp},
})
}
return resultVector
}
// === delta(Matrix ValueTypeMatrix) Vector ===
func funcDelta(ev *evaluator, args Expressions) Value {
return extrapolatedRate(ev, args[0], false, false)
}
// === rate(node ValueTypeMatrix) Vector ===
func funcRate(ev *evaluator, args Expressions) Value {
return extrapolatedRate(ev, args[0], true, true)
}
// === increase(node ValueTypeMatrix) Vector ===
func funcIncrease(ev *evaluator, args Expressions) Value {
return extrapolatedRate(ev, args[0], true, false)
}
// === irate(node ValueTypeMatrix) Vector ===
func funcIrate(ev *evaluator, args Expressions) Value {
return instantValue(ev, args[0], true)
}
// === idelta(node model.ValMatric) Vector ===
func funcIdelta(ev *evaluator, args Expressions) Value {
return instantValue(ev, args[0], false)
}
func instantValue(ev *evaluator, arg Expr, isRate bool) Value {
resultVector := Vector{}
for _, samples := range ev.evalMatrix(arg) {
// No sense in trying to compute a rate without at least two points. Drop
// this Vector element.
if len(samples.Points) < 2 {
continue
}
lastSample := samples.Points[len(samples.Points)-1]
previousSample := samples.Points[len(samples.Points)-2]
var resultValue float64
if isRate && lastSample.V < previousSample.V {
// Counter reset.
resultValue = lastSample.V
} else {
resultValue = lastSample.V - previousSample.V
}
sampledInterval := lastSample.T - previousSample.T
if sampledInterval == 0 {
// Avoid dividing by 0.
continue
}
if isRate {
// Convert to per-second.
resultValue /= float64(sampledInterval) / 1000
}
resultVector = append(resultVector, Sample{
Metric: dropMetricName(samples.Metric),
Point: Point{V: resultValue, T: ev.Timestamp},
})
}
return resultVector
}
// Calculate the trend value at the given index i in raw data d.
// This is somewhat analogous to the slope of the trend at the given index.
// The argument "s" is the set of computed smoothed values.
// The argument "b" is the set of computed trend factors.
// The argument "d" is the set of raw input values.
func calcTrendValue(i int, sf, tf float64, s, b, d []float64) float64 {
if i == 0 {
return b[0]
}
x := tf * (s[i] - s[i-1])
y := (1 - tf) * b[i-1]
// Cache the computed value.
b[i] = x + y
return b[i]
}
// Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data.
// Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current
// data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects
// how trends in historical data will affect the current data. A higher trend factor increases the influence.
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
func funcHoltWinters(ev *evaluator, args Expressions) Value {
mat := ev.evalMatrix(args[0])
// The smoothing factor argument.
sf := ev.evalFloat(args[1])
// The trend factor argument.
tf := ev.evalFloat(args[2])
// Sanity check the input.
if sf <= 0 || sf >= 1 {
ev.errorf("invalid smoothing factor. Expected: 0 < sf < 1 goT: %f", sf)
}
if tf <= 0 || tf >= 1 {
ev.errorf("invalid trend factor. Expected: 0 < tf < 1 goT: %f", sf)
}
// Make an output Vector large enough to hold the entire result.
resultVector := make(Vector, 0, len(mat))
// Create scratch values.
var s, b, d []float64
var l int
for _, samples := range mat {
l = len(samples.Points)
// Can't do the smoothing operation with less than two points.
if l < 2 {
continue
}
// Resize scratch values.
if l != len(s) {
s = make([]float64, l)
b = make([]float64, l)
d = make([]float64, l)
}
// Fill in the d values with the raw values from the input.
for i, v := range samples.Points {
d[i] = v.V
}
// Set initial values.
s[0] = d[0]
b[0] = d[1] - d[0]
// Run the smoothing operation.
var x, y float64
for i := 1; i < len(d); i++ {
// Scale the raw value against the smoothing factor.
x = sf * d[i]
// Scale the last smoothed value with the trend at this point.
y = (1 - sf) * (s[i-1] + calcTrendValue(i-1, sf, tf, s, b, d))
s[i] = x + y
}
resultVector = append(resultVector, Sample{
Metric: dropMetricName(samples.Metric),
Point: Point{V: s[len(s)-1], T: ev.Timestamp}, // The last value in the Vector is the smoothed result.
})
}
return resultVector
}
// === sort(node ValueTypeVector) Vector ===
func funcSort(ev *evaluator, args Expressions) Value {
// NaN should sort to the bottom, so take descending sort with NaN first and
// reverse it.
byValueSorter := vectorByReverseValueHeap(ev.evalVector(args[0]))
sort.Sort(sort.Reverse(byValueSorter))
return Vector(byValueSorter)
}
// === sortDesc(node ValueTypeVector) Vector ===
func funcSortDesc(ev *evaluator, args Expressions) Value {
// NaN should sort to the bottom, so take ascending sort with NaN first and
// reverse it.
byValueSorter := vectorByValueHeap(ev.evalVector(args[0]))
sort.Sort(sort.Reverse(byValueSorter))
return Vector(byValueSorter)
}
// === clamp_max(Vector ValueTypeVector, max Scalar) Vector ===
func funcClampMax(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
max := ev.evalFloat(args[1])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Min(max, float64(el.V))
}
return vec
}
// === clamp_min(Vector ValueTypeVector, min Scalar) Vector ===
func funcClampMin(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
min := ev.evalFloat(args[1])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Max(min, float64(el.V))
}
return vec
}
// === round(Vector ValueTypeVector, toNearest=1 Scalar) Vector ===
func funcRound(ev *evaluator, args Expressions) Value {
// round returns a number rounded to toNearest.
// Ties are solved by rounding up.
toNearest := float64(1)
if len(args) >= 2 {
toNearest = ev.evalFloat(args[1])
}
// Invert as it seems to cause fewer floating point accuracy issues.
toNearestInverse := 1.0 / toNearest
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Floor(float64(el.V)*toNearestInverse+0.5) / toNearestInverse
}
return vec
}
// === Scalar(node ValueTypeVector) Scalar ===
func funcScalar(ev *evaluator, args Expressions) Value {
v := ev.evalVector(args[0])
if len(v) != 1 {
return Scalar{
V: math.NaN(),
T: ev.Timestamp,
}
}
return Scalar{
V: v[0].V,
T: ev.Timestamp,
}
}
func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]Point) float64) Value {
mat := ev.evalMatrix(args[0])
resultVector := Vector{}
for _, el := range mat {
if len(el.Points) == 0 {
continue
}
resultVector = append(resultVector, Sample{
Metric: dropMetricName(el.Metric),
Point: Point{V: aggrFn(el.Points), T: ev.Timestamp},
})
}
return resultVector
}
// === avg_over_time(Matrix ValueTypeMatrix) Vector ===
func funcAvgOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values []Point) float64 {
var sum float64
for _, v := range values {
sum += v.V
}
return sum / float64(len(values))
})
}
// === count_over_time(Matrix ValueTypeMatrix) Vector ===
func funcCountOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values []Point) float64 {
return float64(len(values))
})
}
// === floor(Vector ValueTypeVector) Vector ===
func funcFloor(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Floor(float64(el.V))
}
return vec
}
// === max_over_time(Matrix ValueTypeMatrix) Vector ===
func funcMaxOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values []Point) float64 {
max := math.Inf(-1)
for _, v := range values {
max = math.Max(max, float64(v.V))
}
return max
})
}
// === min_over_time(Matrix ValueTypeMatrix) Vector ===
func funcMinOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values []Point) float64 {
min := math.Inf(1)
for _, v := range values {
min = math.Min(min, float64(v.V))
}
return min
})
}
// === sum_over_time(Matrix ValueTypeMatrix) Vector ===
func funcSumOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values []Point) float64 {
var sum float64
for _, v := range values {
sum += v.V
}
return sum
})
}
// === quantile_over_time(Matrix ValueTypeMatrix) Vector ===
func funcQuantileOverTime(ev *evaluator, args Expressions) Value {
q := ev.evalFloat(args[0])
mat := ev.evalMatrix(args[1])
resultVector := Vector{}
for _, el := range mat {
if len(el.Points) == 0 {
continue
}
el.Metric = dropMetricName(el.Metric)
values := make(vectorByValueHeap, 0, len(el.Points))
for _, v := range el.Points {
values = append(values, Sample{Point: Point{V: v.V}})
}
resultVector = append(resultVector, Sample{
Metric: el.Metric,
Point: Point{V: quantile(q, values), T: ev.Timestamp},
})
}
return resultVector
}
// === stddev_over_time(Matrix ValueTypeMatrix) Vector ===
func funcStddevOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values []Point) float64 {
var sum, squaredSum, count float64
for _, v := range values {
sum += v.V
squaredSum += v.V * v.V
count++
}
avg := sum / count
return math.Sqrt(float64(squaredSum/count - avg*avg))
})
}
// === stdvar_over_time(Matrix ValueTypeMatrix) Vector ===
func funcStdvarOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values []Point) float64 {
var sum, squaredSum, count float64
for _, v := range values {
sum += v.V
squaredSum += v.V * v.V
count++
}
avg := sum / count
return squaredSum/count - avg*avg
})
}
// === abs(Vector ValueTypeVector) Vector ===
func funcAbs(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Abs(float64(el.V))
}
return vec
}
// === absent(Vector ValueTypeVector) Vector ===
func funcAbsent(ev *evaluator, args Expressions) Value {
if len(ev.evalVector(args[0])) > 0 {
return Vector{}
}
m := []labels.Label{}
if vs, ok := args[0].(*VectorSelector); ok {
for _, ma := range vs.LabelMatchers {
if ma.Type == labels.MatchEqual && ma.Name != labels.MetricName {
m = append(m, labels.Label{Name: ma.Name, Value: ma.Value})
}
}
}
return Vector{
Sample{
Metric: labels.New(m...),
Point: Point{V: 1, T: ev.Timestamp},
},
}
}
// === ceil(Vector ValueTypeVector) Vector ===
func funcCeil(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Ceil(float64(el.V))
}
return vec
}
// === exp(Vector ValueTypeVector) Vector ===
func funcExp(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Exp(float64(el.V))
}
return vec
}
// === sqrt(Vector VectorNode) Vector ===
func funcSqrt(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Sqrt(float64(el.V))
}
return vec
}
// === ln(Vector ValueTypeVector) Vector ===
func funcLn(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Log(float64(el.V))
}
return vec
}
// === log2(Vector ValueTypeVector) Vector ===
func funcLog2(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Log2(float64(el.V))
}
return vec
}
// === log10(Vector ValueTypeVector) Vector ===
func funcLog10(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = math.Log10(float64(el.V))
}
return vec
}
// === timestamp(Vector ValueTypeVector) Vector ===
func funcTimestamp(ev *evaluator, args Expressions) Value {
vec := ev.evalVector(args[0])
for i := range vec {
el := &vec[i]
el.Metric = dropMetricName(el.Metric)
el.V = float64(el.T) / 1000.0
}
return vec
}
// linearRegression performs a least-square linear regression analysis on the
// provided SamplePairs. It returns the slope, and the intercept value at the
// provided time.
func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) {
var (
n float64
sumX, sumY float64
sumXY, sumX2 float64
)
for _, sample := range samples {
x := float64(sample.T-interceptTime) / 1e3
n += 1.0
sumY += sample.V
sumX += x
sumXY += x * sample.V
sumX2 += x * x
}
covXY := sumXY - sumX*sumY/n
varX := sumX2 - sumX*sumX/n
slope = covXY / varX
intercept = sumY/n - slope*sumX/n
return slope, intercept
}
// === deriv(node ValueTypeMatrix) Vector ===
func funcDeriv(ev *evaluator, args Expressions) Value {
mat := ev.evalMatrix(args[0])
resultVector := make(Vector, 0, len(mat))
for _, samples := range mat {
// No sense in trying to compute a derivative without at least two points.
// Drop this Vector element.
if len(samples.Points) < 2 {
continue
}
// We pass in an arbitrary timestamp that is near the values in use
// to avoid floating point accuracy issues, see
// https://github.com/prometheus/prometheus/issues/2674
slope, _ := linearRegression(samples.Points, samples.Points[0].T)
resultSample := Sample{
Metric: dropMetricName(samples.Metric),
Point: Point{V: slope, T: ev.Timestamp},
}
resultVector = append(resultVector, resultSample)
}
return resultVector
}
// === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector ===
func funcPredictLinear(ev *evaluator, args Expressions) Value {
mat := ev.evalMatrix(args[0])
resultVector := make(Vector, 0, len(mat))
duration := ev.evalFloat(args[1])
for _, samples := range mat {
// No sense in trying to predict anything without at least two points.
// Drop this Vector element.
if len(samples.Points) < 2 {
continue
}
slope, intercept := linearRegression(samples.Points, ev.Timestamp)
resultVector = append(resultVector, Sample{
Metric: dropMetricName(samples.Metric),
Point: Point{V: slope*duration + intercept, T: ev.Timestamp},
})
}
return resultVector
}
// === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector ===
func funcHistogramQuantile(ev *evaluator, args Expressions) Value {
q := ev.evalFloat(args[0])
inVec := ev.evalVector(args[1])
outVec := Vector{}
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{}
for _, el := range inVec {
upperBound, err := strconv.ParseFloat(
el.Metric.Get(model.BucketLabel), 64,
)
if err != nil {
// Oops, no bucket label or malformed label value. Skip.
// TODO(beorn7): Issue a warning somehow.
continue
}
hash := hashWithoutLabels(el.Metric, excludedLabels...)
mb, ok := signatureToMetricWithBuckets[hash]
if !ok {
el.Metric = labels.NewBuilder(el.Metric).
Del(labels.BucketLabel, labels.MetricName).
Labels()
mb = &metricWithBuckets{el.Metric, nil}
signatureToMetricWithBuckets[hash] = mb
}
mb.buckets = append(mb.buckets, bucket{upperBound, el.V})
}
for _, mb := range signatureToMetricWithBuckets {
outVec = append(outVec, Sample{
Metric: mb.metric,
Point: Point{V: bucketQuantile(q, mb.buckets), T: ev.Timestamp},
})
}
return outVec
}
// === resets(Matrix ValueTypeMatrix) Vector ===
func funcResets(ev *evaluator, args Expressions) Value {
in := ev.evalMatrix(args[0])
out := make(Vector, 0, len(in))
for _, samples := range in {
resets := 0
prev := samples.Points[0].V
for _, sample := range samples.Points[1:] {
current := sample.V
if current < prev {
resets++
}
prev = current
}
out = append(out, Sample{
Metric: dropMetricName(samples.Metric),
Point: Point{V: float64(resets), T: ev.Timestamp},
})
}
return out
}
// === changes(Matrix ValueTypeMatrix) Vector ===
func funcChanges(ev *evaluator, args Expressions) Value {
in := ev.evalMatrix(args[0])
out := make(Vector, 0, len(in))
for _, samples := range in {
changes := 0
prev := samples.Points[0].V
for _, sample := range samples.Points[1:] {
current := sample.V
if current != prev && !(math.IsNaN(float64(current)) && math.IsNaN(float64(prev))) {
changes++
}
prev = current
}
out = append(out, Sample{
Metric: dropMetricName(samples.Metric),
Point: Point{V: float64(changes), T: ev.Timestamp},
})
}
return out
}
// === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector ===
func funcLabelReplace(ev *evaluator, args Expressions) Value {
var (
vector = ev.evalVector(args[0])
dst = ev.evalString(args[1]).V
repl = ev.evalString(args[2]).V
src = ev.evalString(args[3]).V
regexStr = ev.evalString(args[4]).V
)
regex, err := regexp.Compile("^(?:" + regexStr + ")$")
if err != nil {
ev.errorf("invalid regular expression in label_replace(): %s", regexStr)
}
if !model.LabelNameRE.MatchString(string(dst)) {
ev.errorf("invalid destination label name in label_replace(): %s", dst)
}
outSet := make(map[uint64]struct{}, len(vector))
for i := range vector {
el := &vector[i]
srcVal := el.Metric.Get(src)
indexes := regex.FindStringSubmatchIndex(srcVal)
// If there is no match, no replacement should take place.
if indexes == nil {
continue
}
res := regex.ExpandString([]byte{}, repl, srcVal, indexes)
lb := labels.NewBuilder(el.Metric).Del(dst)
if len(res) > 0 {
lb.Set(dst, string(res))
}
el.Metric = lb.Labels()
h := el.Metric.Hash()
if _, ok := outSet[h]; ok {
ev.errorf("duplicated label set in output of label_replace(): %s", el.Metric)
} else {
outSet[h] = struct{}{}
}
}
return vector
}
// === Vector(s Scalar) Vector ===
func funcVector(ev *evaluator, args Expressions) Value {
return Vector{
Sample{
Metric: labels.Labels{},
Point: Point{V: ev.evalFloat(args[0]), T: ev.Timestamp},
},
}
}
// === label_join(vector model.ValVector, dest_labelname, separator, src_labelname...) Vector ===
func funcLabelJoin(ev *evaluator, args Expressions) Value {
var (
vector = ev.evalVector(args[0])
dst = ev.evalString(args[1]).V
sep = ev.evalString(args[2]).V
srcLabels = make([]string, len(args)-3)
)
for i := 3; i < len(args); i++ {
src := ev.evalString(args[i]).V
if !model.LabelName(src).IsValid() {
ev.errorf("invalid source label name in label_join(): %s", src)
}
srcLabels[i-3] = src
}
if !model.LabelName(dst).IsValid() {
ev.errorf("invalid destination label name in label_join(): %s", dst)
}
outSet := make(map[uint64]struct{}, len(vector))
for i := range vector {
el := &vector[i]
srcVals := make([]string, len(srcLabels))
for i, src := range srcLabels {
srcVals[i] = el.Metric.Get(src)
}
lb := labels.NewBuilder(el.Metric)
strval := strings.Join(srcVals, sep)
if strval == "" {
lb.Del(dst)
} else {
lb.Set(dst, strval)
}
el.Metric = lb.Labels()
h := el.Metric.Hash()
if _, exists := outSet[h]; exists {
ev.errorf("duplicated label set in output of label_join(): %s", el.Metric)
} else {
outSet[h] = struct{}{}
}
}
return vector
}
// Common code for date related functions.
func dateWrapper(ev *evaluator, args Expressions, f func(time.Time) float64) Value {
var v Vector
if len(args) == 0 {
v = Vector{
Sample{
Metric: labels.Labels{},
Point: Point{V: float64(ev.Timestamp) / 1000, T: ev.Timestamp},
},
}
} else {
v = ev.evalVector(args[0])
}
for i := range v {
el := &v[i]
el.Metric = dropMetricName(el.Metric)
t := time.Unix(int64(el.V), 0).UTC()
el.V = f(t)
}
return v
}
// === days_in_month(v Vector) Scalar ===
func funcDaysInMonth(ev *evaluator, args Expressions) Value {
return dateWrapper(ev, args, func(t time.Time) float64 {
return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day())
})
}
// === day_of_month(v Vector) Scalar ===
func funcDayOfMonth(ev *evaluator, args Expressions) Value {
return dateWrapper(ev, args, func(t time.Time) float64 {
return float64(t.Day())
})
}
// === day_of_week(v Vector) Scalar ===
func funcDayOfWeek(ev *evaluator, args Expressions) Value {
return dateWrapper(ev, args, func(t time.Time) float64 {
return float64(t.Weekday())
})
}
// === hour(v Vector) Scalar ===
func funcHour(ev *evaluator, args Expressions) Value {
return dateWrapper(ev, args, func(t time.Time) float64 {
return float64(t.Hour())
})
}
// === minute(v Vector) Scalar ===
func funcMinute(ev *evaluator, args Expressions) Value {
return dateWrapper(ev, args, func(t time.Time) float64 {
return float64(t.Minute())
})
}
// === month(v Vector) Scalar ===
func funcMonth(ev *evaluator, args Expressions) Value {
return dateWrapper(ev, args, func(t time.Time) float64 {
return float64(t.Month())
})
}
// === year(v Vector) Scalar ===
func funcYear(ev *evaluator, args Expressions) Value {
return dateWrapper(ev, args, func(t time.Time) float64 {
return float64(t.Year())
})
}
var functions = map[string]*Function{
"abs": {
Name: "abs",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcAbs,
},
"absent": {
Name: "absent",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcAbsent,
},
"avg_over_time": {
Name: "avg_over_time",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcAvgOverTime,
},
"ceil": {
Name: "ceil",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcCeil,
},
"changes": {
Name: "changes",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcChanges,
},
"clamp_max": {
Name: "clamp_max",
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
ReturnType: ValueTypeVector,
Call: funcClampMax,
},
"clamp_min": {
Name: "clamp_min",
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
ReturnType: ValueTypeVector,
Call: funcClampMin,
},
"count_over_time": {