|
| 1 | +from itertools import chain |
| 2 | + |
| 3 | +from tensorflow.python.keras import Input |
| 4 | +from tensorflow.python.keras.initializers import RandomNormal |
| 5 | +from tensorflow.python.keras.layers import Embedding, Dense, Reshape, Concatenate |
| 6 | +from tensorflow.python.keras.regularizers import l2 |
| 7 | +from .sequence import SequencePoolingLayer |
| 8 | +from .utils import get_linear_logit |
| 9 | + |
| 10 | + |
| 11 | +def create_input_dict(feature_dim_dict, prefix=''): |
| 12 | + sparse_input = {feat: Input(shape=(1,), name=prefix+'sparse_' + str(i) + '-' + feat) for i, feat in |
| 13 | + enumerate(feature_dim_dict["sparse"])} |
| 14 | + dense_input = {feat: Input(shape=(1,), name=prefix+'dense_' + str(i) + '-' + feat) for i, feat in |
| 15 | + enumerate(feature_dim_dict["dense"])} |
| 16 | + return sparse_input, dense_input |
| 17 | + |
| 18 | + |
| 19 | +def create_sequence_input_dict(feature_dim_dict): |
| 20 | + |
| 21 | + sequence_dim_dict = feature_dim_dict.get('sequence', []) |
| 22 | + sequence_input_dict = {feat.name: Input(shape=(feat.maxlen,), name='seq_' + str( |
| 23 | + i) + '-' + feat.name) for i, feat in enumerate(sequence_dim_dict)} |
| 24 | + sequence_pooling_dict = {feat.name: feat.combiner |
| 25 | + for i, feat in enumerate(sequence_dim_dict)} |
| 26 | + sequence_len_dict = {feat.name: Input(shape=( |
| 27 | + 1,), name='seq_length'+str(i)+'-'+feat.name) for i, feat in enumerate(sequence_dim_dict)} |
| 28 | + sequence_max_len_dict = {feat.name: feat.maxlen |
| 29 | + for i, feat in enumerate(sequence_dim_dict)} |
| 30 | + return sequence_input_dict, sequence_pooling_dict, sequence_len_dict, sequence_max_len_dict |
| 31 | + |
| 32 | + |
| 33 | +def create_embedding_dict(feature_dim_dict, embedding_size, init_std, seed, l2_reg, prefix='sparse'): |
| 34 | + if embedding_size == 'auto': |
| 35 | + |
| 36 | + sparse_embedding = {feat: Embedding(feature_dim_dict["sparse"][feat], 6 * int(pow(feature_dim_dict["sparse"][feat], 0.25)), |
| 37 | + embeddings_initializer=RandomNormal( |
| 38 | + mean=0.0, stddev=init_std, seed=seed), |
| 39 | + embeddings_regularizer=l2(l2_reg), |
| 40 | + name=prefix+'_emb_' + str(i) + '-' + feat) for i, feat in |
| 41 | + enumerate(feature_dim_dict["sparse"])} |
| 42 | + else: |
| 43 | + |
| 44 | + sparse_embedding = {feat: Embedding(feature_dim_dict["sparse"][feat], embedding_size, |
| 45 | + embeddings_initializer=RandomNormal( |
| 46 | + mean=0.0, stddev=init_std, seed=seed), |
| 47 | + embeddings_regularizer=l2(l2_reg), |
| 48 | + name=prefix+'_emb_' + str(i) + '-' + feat) for i, feat in |
| 49 | + enumerate(feature_dim_dict["sparse"])} |
| 50 | + |
| 51 | + if 'sequence' in feature_dim_dict: |
| 52 | + count = len(sparse_embedding) |
| 53 | + sequence_dim_list = feature_dim_dict['sequence'] |
| 54 | + for feat in sequence_dim_list: |
| 55 | + if feat.name not in sparse_embedding: |
| 56 | + if embedding_size == "auto": |
| 57 | + sparse_embedding[feat.name] = Embedding(feat.dimension, 6 * int(pow(feat.dimension, 0.25)), |
| 58 | + embeddings_initializer=RandomNormal( |
| 59 | + mean=0.0, stddev=init_std, seed=seed), |
| 60 | + embeddings_regularizer=l2( |
| 61 | + l2_reg), |
| 62 | + name=prefix + '_emb_' + str(count) + '-' + feat.name) |
| 63 | + |
| 64 | + else: |
| 65 | + sparse_embedding[feat.name] = Embedding(feat.dimension, embedding_size, |
| 66 | + embeddings_initializer=RandomNormal( |
| 67 | + mean=0.0, stddev=init_std, seed=seed), |
| 68 | + embeddings_regularizer=l2( |
| 69 | + l2_reg), |
| 70 | + name=prefix+'_emb_' + str(count) + '-' + feat.name) |
| 71 | + |
| 72 | + count += 1 |
| 73 | + |
| 74 | + return sparse_embedding |
| 75 | + |
| 76 | + |
| 77 | +def merge_dense_input(dense_input_, embed_list, embedding_size, l2_reg): |
| 78 | + dense_input = list(dense_input_.values()) |
| 79 | + if len(dense_input) > 0: |
| 80 | + if embedding_size == "auto": |
| 81 | + if len(dense_input) == 1: |
| 82 | + continuous_embedding_list = dense_input[0] |
| 83 | + else: |
| 84 | + continuous_embedding_list = Concatenate()(dense_input) |
| 85 | + continuous_embedding_list = Reshape( |
| 86 | + [1, len(dense_input)])(continuous_embedding_list) |
| 87 | + embed_list.append(continuous_embedding_list) |
| 88 | + |
| 89 | + else: |
| 90 | + continuous_embedding_list = list( |
| 91 | + map(Dense(embedding_size, use_bias=False, kernel_regularizer=l2(l2_reg), ), |
| 92 | + dense_input)) |
| 93 | + continuous_embedding_list = list( |
| 94 | + map(Reshape((1, embedding_size)), continuous_embedding_list)) |
| 95 | + embed_list += continuous_embedding_list |
| 96 | + |
| 97 | + return embed_list |
| 98 | + |
| 99 | + |
| 100 | +def merge_sequence_input(embedding_dict, embed_list, sequence_input_dict, sequence_len_dict, sequence_max_len_dict, sequence_pooling_dict): |
| 101 | + if len(sequence_input_dict) > 0: |
| 102 | + sequence_embed_dict = get_varlen_embedding_vec_dict( |
| 103 | + embedding_dict, sequence_input_dict) |
| 104 | + sequence_embed_list = get_pooling_vec_list( |
| 105 | + sequence_embed_dict, sequence_len_dict, sequence_max_len_dict, sequence_pooling_dict) |
| 106 | + embed_list += sequence_embed_list |
| 107 | + |
| 108 | + return embed_list |
| 109 | + |
| 110 | + |
| 111 | +def get_embedding_vec_list(embedding_dict, input_dict): |
| 112 | + |
| 113 | + return [embedding_dict[feat](v) |
| 114 | + for feat, v in input_dict.items()] |
| 115 | + |
| 116 | + |
| 117 | +def get_varlen_embedding_vec_dict(embedding_dict, input_dict): |
| 118 | + |
| 119 | + return {feat: embedding_dict[feat](v) |
| 120 | + for feat, v in input_dict.items()} |
| 121 | + |
| 122 | + |
| 123 | +def get_pooling_vec_list(sequence_embed_dict, sequence_len_dict, sequence_max_len_dict, sequence_pooling_dict): |
| 124 | + return [SequencePoolingLayer(sequence_max_len_dict[feat], sequence_pooling_dict[feat])( |
| 125 | + [v, sequence_len_dict[feat]]) for feat, v in sequence_embed_dict.items()] |
| 126 | + |
| 127 | + |
| 128 | +def get_inputs_list(inputs): |
| 129 | + return list(chain(*list(map(lambda x: x.values(), inputs)))) |
| 130 | + |
| 131 | + |
| 132 | +def get_inputs_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, l2_reg_linear, init_std, seed, include_linear=True): |
| 133 | + sparse_input_dict, dense_input_dict = create_input_dict(feature_dim_dict) |
| 134 | + sequence_input_dict, sequence_pooling_dict, sequence_input_len_dict, sequence_max_len_dict = create_sequence_input_dict( |
| 135 | + feature_dim_dict) |
| 136 | + |
| 137 | + deep_sparse_emb_dict = create_embedding_dict( |
| 138 | + feature_dim_dict, embedding_size, init_std, seed, l2_reg_embedding) |
| 139 | + |
| 140 | + deep_emb_list = get_embedding_vec_list( |
| 141 | + deep_sparse_emb_dict, sparse_input_dict) |
| 142 | + |
| 143 | + deep_emb_list = merge_sequence_input(deep_sparse_emb_dict, deep_emb_list, sequence_input_dict, |
| 144 | + sequence_input_len_dict, sequence_max_len_dict, sequence_pooling_dict) |
| 145 | + |
| 146 | + deep_emb_list = merge_dense_input( |
| 147 | + dense_input_dict, deep_emb_list, embedding_size, l2_reg_embedding) |
| 148 | + if include_linear: |
| 149 | + linear_sparse_emb_dict = create_embedding_dict( |
| 150 | + feature_dim_dict, 1, init_std, seed, l2_reg_linear, 'linear') |
| 151 | + linear_emb_list = get_embedding_vec_list( |
| 152 | + linear_sparse_emb_dict, sparse_input_dict) |
| 153 | + linear_emb_list = merge_sequence_input(linear_sparse_emb_dict, linear_emb_list, sequence_input_dict, |
| 154 | + sequence_input_len_dict, |
| 155 | + sequence_max_len_dict, sequence_pooling_dict) |
| 156 | + |
| 157 | + linear_logit = get_linear_logit( |
| 158 | + linear_emb_list, dense_input_dict, l2_reg_linear) |
| 159 | + else: |
| 160 | + linear_logit = None |
| 161 | + |
| 162 | + inputs_list = get_inputs_list( |
| 163 | + [sparse_input_dict, dense_input_dict, sequence_input_dict, sequence_input_len_dict]) |
| 164 | + return deep_emb_list, linear_logit, inputs_list |
0 commit comments