forked from samber/lo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchannel.go
309 lines (246 loc) · 8.33 KB
/
channel.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
package lo
import (
"math/rand"
"sync"
"time"
)
type DispatchingStrategy[T any] func(msg T, index uint64, channels []<-chan T) int
// ChannelDispatcher distributes messages from input channels into N child channels.
// Close events are propagated to children.
// Underlying channels can have a fixed buffer capacity or be unbuffered when cap is 0.
func ChannelDispatcher[T any](stream <-chan T, count int, channelBufferCap int, strategy DispatchingStrategy[T]) []<-chan T {
children := createChannels[T](count, channelBufferCap)
roChildren := channelsToReadOnly(children)
go func() {
// propagate channel closing to children
defer closeChannels(children)
var i uint64 = 0
for {
msg, ok := <-stream
if !ok {
return
}
destination := strategy(msg, i, roChildren) % count
children[destination] <- msg
i++
}
}()
return roChildren
}
func createChannels[T any](count int, channelBufferCap int) []chan T {
children := make([]chan T, 0, count)
for i := 0; i < count; i++ {
children = append(children, make(chan T, channelBufferCap))
}
return children
}
func channelsToReadOnly[T any](children []chan T) []<-chan T {
roChildren := make([]<-chan T, 0, len(children))
for i := range children {
roChildren = append(roChildren, children[i])
}
return roChildren
}
func closeChannels[T any](children []chan T) {
for i := 0; i < len(children); i++ {
close(children[i])
}
}
func channelIsNotFull[T any](ch <-chan T) bool {
return cap(ch) == 0 || len(ch) < cap(ch)
}
// DispatchingStrategyRoundRobin distributes messages in a rotating sequential manner.
// If the channel capacity is exceeded, the next channel will be selected and so on.
func DispatchingStrategyRoundRobin[T any](msg T, index uint64, channels []<-chan T) int {
for {
i := int(index % uint64(len(channels)))
if channelIsNotFull(channels[i]) {
return i
}
index++
time.Sleep(10 * time.Microsecond) // prevent CPU from burning 🔥
}
}
// DispatchingStrategyRandom distributes messages in a random manner.
// If the channel capacity is exceeded, another random channel will be selected and so on.
func DispatchingStrategyRandom[T any](msg T, index uint64, channels []<-chan T) int {
for {
i := rand.Intn(len(channels))
if channelIsNotFull(channels[i]) {
return i
}
time.Sleep(10 * time.Microsecond) // prevent CPU from burning 🔥
}
}
// DispatchingStrategyWeightedRandom distributes messages in a weighted manner.
// If the channel capacity is exceeded, another random channel will be selected and so on.
func DispatchingStrategyWeightedRandom[T any](weights []int) DispatchingStrategy[T] {
seq := []int{}
for i := 0; i < len(weights); i++ {
for j := 0; j < weights[i]; j++ {
seq = append(seq, i)
}
}
return func(msg T, index uint64, channels []<-chan T) int {
for {
i := seq[rand.Intn(len(seq))]
if channelIsNotFull(channels[i]) {
return i
}
time.Sleep(10 * time.Microsecond) // prevent CPU from burning 🔥
}
}
}
// DispatchingStrategyFirst distributes messages in the first non-full channel.
// If the capacity of the first channel is exceeded, the second channel will be selected and so on.
func DispatchingStrategyFirst[T any](msg T, index uint64, channels []<-chan T) int {
for {
for i := range channels {
if channelIsNotFull(channels[i]) {
return i
}
}
time.Sleep(10 * time.Microsecond) // prevent CPU from burning 🔥
}
}
// DispatchingStrategyLeast distributes messages in the emptiest channel.
func DispatchingStrategyLeast[T any](msg T, index uint64, channels []<-chan T) int {
seq := Range(len(channels))
return MinBy(seq, func(item int, min int) bool {
return len(channels[item]) < len(channels[min])
})
}
// DispatchingStrategyMost distributes messages in the fullest channel.
// If the channel capacity is exceeded, the next channel will be selected and so on.
func DispatchingStrategyMost[T any](msg T, index uint64, channels []<-chan T) int {
seq := Range(len(channels))
return MaxBy(seq, func(item int, max int) bool {
return len(channels[item]) > len(channels[max]) && channelIsNotFull(channels[item])
})
}
// SliceToChannel returns a read-only channels of collection elements.
func SliceToChannel[T any](bufferSize int, collection []T) <-chan T {
ch := make(chan T, bufferSize)
go func() {
for _, item := range collection {
ch <- item
}
close(ch)
}()
return ch
}
// ChannelToSlice returns a slice built from channels items. Blocks until channel closes.
func ChannelToSlice[T any](ch <-chan T) []T {
collection := []T{}
for item := range ch {
collection = append(collection, item)
}
return collection
}
// Generator implements the generator design pattern.
func Generator[T any](bufferSize int, generator func(yield func(T))) <-chan T {
ch := make(chan T, bufferSize)
go func() {
// WARNING: infinite loop
generator(func(t T) {
ch <- t
})
close(ch)
}()
return ch
}
// Buffer creates a slice of n elements from a channel. Returns the slice and the slice length.
// @TODO: we should probably provide an helper that reuse the same buffer.
func Buffer[T any](ch <-chan T, size int) (collection []T, length int, readTime time.Duration, ok bool) {
buffer := make([]T, 0, size)
index := 0
now := time.Now()
for ; index < size; index++ {
item, ok := <-ch
if !ok {
return buffer, index, time.Since(now), false
}
buffer = append(buffer, item)
}
return buffer, index, time.Since(now), true
}
// Batch creates a slice of n elements from a channel. Returns the slice and the slice length.
//
// Deprecated: Use [Buffer] instead.
func Batch[T any](ch <-chan T, size int) (collection []T, length int, readTime time.Duration, ok bool) {
return Buffer(ch, size)
}
// BufferWithTimeout creates a slice of n elements from a channel, with timeout. Returns the slice and the slice length.
// @TODO: we should probably provide an helper that reuse the same buffer.
func BufferWithTimeout[T any](ch <-chan T, size int, timeout time.Duration) (collection []T, length int, readTime time.Duration, ok bool) {
expire := time.NewTimer(timeout)
defer expire.Stop()
buffer := make([]T, 0, size)
index := 0
now := time.Now()
for ; index < size; index++ {
select {
case item, ok := <-ch:
if !ok {
return buffer, index, time.Since(now), false
}
buffer = append(buffer, item)
case <-expire.C:
return buffer, index, time.Since(now), true
}
}
return buffer, index, time.Since(now), true
}
// BatchWithTimeout creates a slice of n elements from a channel, with timeout. Returns the slice and the slice length.
//
// Deprecated: Use [BufferWithTimeout] instead.
func BatchWithTimeout[T any](ch <-chan T, size int, timeout time.Duration) (collection []T, length int, readTime time.Duration, ok bool) {
return BufferWithTimeout(ch, size, timeout)
}
// FanIn collects messages from multiple input channels into a single buffered channel.
// Output messages has no priority. When all upstream channels reach EOF, downstream channel closes.
func FanIn[T any](channelBufferCap int, upstreams ...<-chan T) <-chan T {
out := make(chan T, channelBufferCap)
var wg sync.WaitGroup
// Start an output goroutine for each input channel in upstreams.
wg.Add(len(upstreams))
for _, c := range upstreams {
go func(c <-chan T) {
for n := range c {
out <- n
}
wg.Done()
}(c)
}
// Start a goroutine to close out once all the output goroutines are done.
go func() {
wg.Wait()
close(out)
}()
return out
}
// ChannelMerge collects messages from multiple input channels into a single buffered channel.
// Output messages has no priority. When all upstream channels reach EOF, downstream channel closes.
//
// Deprecated: Use [FanIn] instead.
func ChannelMerge[T any](channelBufferCap int, upstreams ...<-chan T) <-chan T {
return FanIn(channelBufferCap, upstreams...)
}
// FanOut broadcasts all the upstream messages to multiple downstream channels.
// When upstream channel reach EOF, downstream channels close. If any downstream
// channels is full, broadcasting is paused.
func FanOut[T any](count int, channelsBufferCap int, upstream <-chan T) []<-chan T {
downstreams := createChannels[T](count, channelsBufferCap)
go func() {
for msg := range upstream {
for i := range downstreams {
downstreams[i] <- msg
}
}
// Close out once all the output goroutines are done.
for i := range downstreams {
close(downstreams[i])
}
}()
return channelsToReadOnly(downstreams)
}