forked from wei-mao-2019/HisRepItself
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_selected_seq.py
133 lines (114 loc) · 5.41 KB
/
main_selected_seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from utils import h36motion3d as datasets
from model import AttModel
from utils.opt import Options
from utils import util
from utils import log
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
def main(opt):
lr_now = opt.lr_now
start_epoch = 1
# opt.is_eval = True
ckpt = './checkpoint/pretrained/h36m_3d_in50_out10_dctn20/'
batch_size = 1
opt.ckpt = ckpt
print('>>> create models')
net_pred = AttModel.AttModel(in_features=66, kernel_size=10, d_model=256,
num_stage=12, dct_n=20)
net_pred.cuda()
print(">>> total params: {:.2f}M".format(sum(p.numel() for p in net_pred.parameters()) / 1000000.0))
model_path_len = './{}/ckpt_best.pth.tar'.format(opt.ckpt)
print(">>> loading ckpt len from '{}'".format(model_path_len))
ckpt = torch.load(model_path_len)
start_epoch = ckpt['epoch']
err_best = ckpt['err']
net_pred.load_state_dict(ckpt['state_dict'])
print(">>> ckpt len loaded (epoch: {} | err: {})".format(start_epoch, err_best))
print('>>> loading datasets')
acts = ["walking", "eating", "smoking", "discussion", "directions",
"greeting", "phoning", "posing", "purchases", "sitting",
"sittingdown", "takingphoto", "waiting", "walkingdog",
"walkingtogether"]
good_idx = pd.read_csv('./checkpoint/pretrained/seq_selected.csv')
good_idx = good_idx.values
sele = {}
for gi in range(good_idx.shape[0]):
if good_idx[gi, 0] in sele.keys():
sele[good_idx[gi, 0]].append(int(good_idx[gi, 1]))
else:
sele[good_idx[gi, 0]] = [int(good_idx[gi, 1])]
err = np.zeros([2, opt.output_n])
n = 0
for act in acts:
if not act in sele.keys():
continue
test_dataset = datasets.Datasets(opt, split=2, actions=[act])
print('>>> Testing dataset length: {:d}'.format(test_dataset.__len__()))
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=0,
pin_memory=True)
# evaluation
ret, nt = run_model(net_pred, is_train=3, data_loader=test_loader, opt=opt, good_idx=sele[act])
err += ret
n += nt
err = err / n
head = np.array(['input_n'])
for k in range(1, opt.output_n + 1):
head = np.append(head, [f'#{k}'])
value = np.expand_dims(np.array(['in50', 'in100']), axis=1)
value = np.concatenate([value, err.astype(np.str)], axis=1)
log.save_csv_log(opt, head, value, is_create=True, file_name='test_in50_in100')
def run_model(net_pred, optimizer=None, is_train=0, data_loader=None, epo=1, opt=None, good_idx=[]):
net_pred.eval()
titles = np.array(range(opt.output_n)) + 1
m_p3d_h36 = np.zeros([2, opt.output_n])
n = 0
in_n = opt.input_n
out_n = opt.output_n
dim_used = np.array([6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68,
75, 76, 77, 78, 79, 80, 81, 82, 83, 87, 88, 89, 90, 91, 92])
seq_in = opt.kernel_size
# joints at same loc
joint_to_ignore = np.array([16, 20, 23, 24, 28, 31])
index_to_ignore = np.concatenate((joint_to_ignore * 3, joint_to_ignore * 3 + 1, joint_to_ignore * 3 + 2))
joint_equal = np.array([13, 19, 22, 13, 27, 30])
index_to_equal = np.concatenate((joint_equal * 3, joint_equal * 3 + 1, joint_equal * 3 + 2))
itera = 3
for i, (p3d_h36) in enumerate(data_loader):
# print(i)
if not (i in good_idx):
continue
batch_size, seq_n, _ = p3d_h36.shape
# when only one sample in this batch
if batch_size == 1 and is_train == 0:
continue
n += batch_size
p3d_h36 = p3d_h36.float().cuda()
p3d_src = p3d_h36.clone()[:, :, dim_used]
p3d_src_50 = p3d_h36.clone()[:, -50 - out_n:, dim_used]
p3d_out_all = net_pred(p3d_src_50, input_n=50, output_n=10, itera=itera)
p3d_out_all = p3d_out_all[:, 10:].transpose(1, 2).reshape([batch_size, 10 * itera, -1])[:, :out_n]
p3d_out_50 = p3d_h36.clone()[:, in_n:in_n + out_n]
p3d_out_50[:, :, dim_used] = p3d_out_all
p3d_out_50[:, :, index_to_ignore] = p3d_out_50[:, :, index_to_equal]
p3d_out_50 = p3d_out_50.reshape([-1, out_n, 32, 3])
p3d_src_100 = p3d_h36.clone()[:, :, dim_used]
p3d_out_all = net_pred(p3d_src_100, input_n=100, output_n=10, itera=itera)
p3d_out_all = p3d_out_all[:, 10:].transpose(1, 2).reshape([batch_size, 10 * itera, -1])[:, :out_n]
p3d_out_100 = p3d_h36.clone()[:, in_n:in_n + out_n]
p3d_out_100[:, :, dim_used] = p3d_out_all
p3d_out_100[:, :, index_to_ignore] = p3d_out_100[:, :, index_to_equal]
p3d_out_100 = p3d_out_100.reshape([-1, out_n, 32, 3])
p3d_h36 = p3d_h36.reshape([-1, in_n + out_n, 32, 3])
mpjpe_p3d_h36 = torch.sum(torch.mean(torch.norm(p3d_h36[:, in_n:] - p3d_out_50, dim=3), dim=2), dim=0)
m_p3d_h36[0] += mpjpe_p3d_h36.cpu().data.numpy()
mpjpe_p3d_h36 = torch.sum(torch.mean(torch.norm(p3d_h36[:, in_n:] - p3d_out_100, dim=3), dim=2), dim=0)
m_p3d_h36[1] += mpjpe_p3d_h36.cpu().data.numpy()
return m_p3d_h36, n
if __name__ == '__main__':
option = Options().parse()
main(option)