forked from bfenetworks/bfe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkey_agreement.go
431 lines (383 loc) · 13.2 KB
/
key_agreement.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// Copyright (c) 2019 Baidu, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bfe_tls
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/md5"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
"crypto/x509"
"encoding/asn1"
"errors"
"io"
"math/big"
)
var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
// rsaKeyAgreement implements the standard TLS key agreement where the client
// encrypts the pre-master secret to the server's public key.
type rsaKeyAgreement struct{}
func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
return nil, nil
}
func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
preMasterSecret := make([]byte, 48)
_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
if err != nil {
return nil, err
}
if len(ckx.ciphertext) < 2 {
return nil, errClientKeyExchange
}
ciphertext := ckx.ciphertext
if version != VersionSSL30 {
ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
if ciphertextLen != len(ckx.ciphertext)-2 {
return nil, errClientKeyExchange
}
ciphertext = ckx.ciphertext[2:]
}
// if ciphertext is zero bytes
c := new(big.Int).SetBytes(ciphertext)
if len(c.Bytes()) == 0 {
return nil, errClientKeyExchange
}
err = rsa.DecryptPKCS1v15SessionKey(config.rand(), cert.PrivateKey.(*rsa.PrivateKey), ciphertext, preMasterSecret)
if err != nil {
return nil, err
}
// We don't check the version number in the premaster secret. For one,
// by checking it, we would leak information about the validity of the
// encrypted pre-master secret. Secondly, it provides only a small
// benefit against a downgrade attack and some implementations send the
// wrong version anyway. See the discussion at the end of section
// 7.4.7.1 of RFC 4346.
return preMasterSecret, nil
}
func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
return errors.New("tls: unexpected ServerKeyExchange")
}
func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
preMasterSecret := make([]byte, 48)
preMasterSecret[0] = byte(clientHello.vers >> 8)
preMasterSecret[1] = byte(clientHello.vers)
_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
if err != nil {
return nil, nil, err
}
encrypted, err := rsa.EncryptPKCS1v15(config.rand(), cert.PublicKey.(*rsa.PublicKey), preMasterSecret)
if err != nil {
return nil, nil, err
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, len(encrypted)+2)
ckx.ciphertext[0] = byte(len(encrypted) >> 8)
ckx.ciphertext[1] = byte(len(encrypted))
copy(ckx.ciphertext[2:], encrypted)
return preMasterSecret, ckx, nil
}
// sha1Hash calculates a SHA1 hash over the given byte slices.
func sha1Hash(slices [][]byte) []byte {
hsha1 := sha1.New()
for _, slice := range slices {
hsha1.Write(slice)
}
return hsha1.Sum(nil)
}
// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
// concatenation of an MD5 and SHA1 hash.
func md5SHA1Hash(slices [][]byte) []byte {
md5sha1 := make([]byte, md5.Size+sha1.Size)
hmd5 := md5.New()
for _, slice := range slices {
hmd5.Write(slice)
}
copy(md5sha1, hmd5.Sum(nil))
copy(md5sha1[md5.Size:], sha1Hash(slices))
return md5sha1
}
// sha256Hash implements TLS 1.2's hash function.
func sha256Hash(slices [][]byte) []byte {
h := sha256.New()
for _, slice := range slices {
h.Write(slice)
}
return h.Sum(nil)
}
// hashForServerKeyExchange hashes the given slices and returns their digest
// and the identifier of the hash function used. The hashFunc argument is only
// used for >= TLS 1.2 and precisely identifies the hash function to use.
func hashForServerKeyExchange(sigType, hashFunc uint8, version uint16, slices ...[]byte) ([]byte, crypto.Hash, error) {
if version >= VersionTLS12 {
switch hashFunc {
case hashSHA256:
return sha256Hash(slices), crypto.SHA256, nil
case hashSHA1:
return sha1Hash(slices), crypto.SHA1, nil
default:
return nil, crypto.Hash(0), errors.New("tls: unknown hash function used by peer")
}
}
if sigType == signatureECDSA {
return sha1Hash(slices), crypto.SHA1, nil
}
return md5SHA1Hash(slices), crypto.MD5SHA1, nil
}
// pickTLS12HashForSignature returns a TLS 1.2 hash identifier for signing a
// ServerKeyExchange given the signature type being used and the client's
// advertised list of supported signature and hash combinations.
func pickTLS12HashForSignature(sigType uint8, clientSignatureAndHashes []signatureAndHash) (uint8, error) {
if len(clientSignatureAndHashes) == 0 {
// If the client didn't specify any signature_algorithms
// extension then we can assume that it supports SHA1. See
// http://tools.ietf.org/html/rfc5246#section-7.4.1.4.1
return hashSHA1, nil
}
for _, sigAndHash := range clientSignatureAndHashes {
if sigAndHash.signature != sigType {
continue
}
switch sigAndHash.hash {
case hashSHA1, hashSHA256:
return sigAndHash.hash, nil
}
}
return 0, errors.New("tls: client doesn't support any common hash functions")
}
func curveForCurveID(id CurveID) (elliptic.Curve, bool) {
switch id {
case CurveP256:
return elliptic.P256(), true
case CurveP384:
return elliptic.P384(), true
case CurveP521:
return elliptic.P521(), true
default:
return nil, false
}
}
func CurveForCurveID(id CurveID) (elliptic.Curve, bool) {
return curveForCurveID(id)
}
// ecdheRSAKeyAgreement implements a TLS key agreement where the server
// generates a ephemeral EC public/private key pair and signs it. The
// pre-master secret is then calculated using ECDH. The signature may
// either be ECDSA or RSA.
type ecdheKeyAgreement struct {
version uint16
sigType uint8
privateKey []byte
curve elliptic.Curve
x, y *big.Int
}
func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
var curveid CurveID
preferredCurves := config.curvePreferences()
NextCandidate:
for _, candidate := range preferredCurves {
for _, c := range clientHello.supportedCurves {
if candidate == c {
curveid = c
break NextCandidate
}
}
}
if curveid == 0 {
return nil, errors.New("tls: no supported elliptic curves offered")
}
var ok bool
if ka.curve, ok = curveForCurveID(curveid); !ok {
return nil, errors.New("tls: preferredCurves includes unsupported curve")
}
var x, y *big.Int
var err error
ka.privateKey, x, y, err = elliptic.GenerateKey(ka.curve, config.rand())
if err != nil {
return nil, err
}
ecdhePublic := elliptic.Marshal(ka.curve, x, y)
// http://tools.ietf.org/html/rfc4492#section-5.4
serverECDHParams := make([]byte, 1+2+1+len(ecdhePublic))
serverECDHParams[0] = 3 // named curve
serverECDHParams[1] = byte(curveid >> 8)
serverECDHParams[2] = byte(curveid)
serverECDHParams[3] = byte(len(ecdhePublic))
copy(serverECDHParams[4:], ecdhePublic)
var tls12HashId uint8
if ka.version >= VersionTLS12 {
if tls12HashId, err = pickTLS12HashForSignature(ka.sigType, clientHello.signatureAndHashes); err != nil {
return nil, err
}
}
digest, hashFunc, err := hashForServerKeyExchange(ka.sigType, tls12HashId, ka.version, clientHello.random, hello.random, serverECDHParams)
if err != nil {
return nil, err
}
var sig []byte
switch ka.sigType {
case signatureECDSA:
privKey, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
if !ok {
return nil, errors.New("ECDHE ECDSA requires an ECDSA server private key")
}
r, s, err := ecdsa.Sign(config.rand(), privKey, digest)
if err != nil {
return nil, errors.New("failed to sign ECDHE parameters: " + err.Error())
}
sig, err = asn1.Marshal(ecdsaSignature{r, s})
case signatureRSA:
privKey, ok := cert.PrivateKey.(*rsa.PrivateKey)
if !ok {
return nil, errors.New("ECDHE RSA requires a RSA server private key")
}
sig, err = rsa.SignPKCS1v15(config.rand(), privKey, hashFunc, digest)
if err != nil {
return nil, errors.New("failed to sign ECDHE parameters: " + err.Error())
}
default:
return nil, errors.New("unknown ECDHE signature algorithm")
}
skx := new(serverKeyExchangeMsg)
sigAndHashLen := 0
if ka.version >= VersionTLS12 {
sigAndHashLen = 2
}
skx.key = make([]byte, len(serverECDHParams)+sigAndHashLen+2+len(sig))
copy(skx.key, serverECDHParams)
k := skx.key[len(serverECDHParams):]
if ka.version >= VersionTLS12 {
k[0] = tls12HashId
k[1] = ka.sigType
k = k[2:]
}
k[0] = byte(len(sig) >> 8)
k[1] = byte(len(sig))
copy(k[2:], sig)
return skx, nil
}
func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
return nil, errClientKeyExchange
}
x, y := elliptic.Unmarshal(ka.curve, ckx.ciphertext[1:])
if x == nil {
return nil, errClientKeyExchange
}
x, _ = ka.curve.ScalarMult(x, y, ka.privateKey)
preMasterSecret := make([]byte, (ka.curve.Params().BitSize+7)>>3)
xBytes := x.Bytes()
copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
return preMasterSecret, nil
}
func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
if len(skx.key) < 4 {
return errServerKeyExchange
}
if skx.key[0] != 3 { // named curve
return errors.New("tls: server selected unsupported curve")
}
curveid := CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
var ok bool
if ka.curve, ok = curveForCurveID(curveid); !ok {
return errors.New("tls: server selected unsupported curve")
}
publicLen := int(skx.key[3])
if publicLen+4 > len(skx.key) {
return errServerKeyExchange
}
ka.x, ka.y = elliptic.Unmarshal(ka.curve, skx.key[4:4+publicLen])
if ka.x == nil {
return errServerKeyExchange
}
serverECDHParams := skx.key[:4+publicLen]
sig := skx.key[4+publicLen:]
if len(sig) < 2 {
return errServerKeyExchange
}
var tls12HashId uint8
if ka.version >= VersionTLS12 {
// handle SignatureAndHashAlgorithm
var sigAndHash []uint8
sigAndHash, sig = sig[:2], sig[2:]
if sigAndHash[1] != ka.sigType {
return errServerKeyExchange
}
tls12HashId = sigAndHash[0]
if len(sig) < 2 {
return errServerKeyExchange
}
}
sigLen := int(sig[0])<<8 | int(sig[1])
if sigLen+2 != len(sig) {
return errServerKeyExchange
}
sig = sig[2:]
digest, hashFunc, err := hashForServerKeyExchange(ka.sigType, tls12HashId, ka.version, clientHello.random, serverHello.random, serverECDHParams)
if err != nil {
return err
}
switch ka.sigType {
case signatureECDSA:
pubKey, ok := cert.PublicKey.(*ecdsa.PublicKey)
if !ok {
return errors.New("ECDHE ECDSA requires a ECDSA server public key")
}
ecdsaSig := new(ecdsaSignature)
if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil {
return err
}
if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
return errors.New("ECDSA signature contained zero or negative values")
}
if !ecdsa.Verify(pubKey, digest, ecdsaSig.R, ecdsaSig.S) {
return errors.New("ECDSA verification failure")
}
case signatureRSA:
pubKey, ok := cert.PublicKey.(*rsa.PublicKey)
if !ok {
return errors.New("ECDHE RSA requires a RSA server public key")
}
if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, digest, sig); err != nil {
return err
}
default:
return errors.New("unknown ECDHE signature algorithm")
}
return nil
}
func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
if ka.curve == nil {
return nil, nil, errors.New("missing ServerKeyExchange message")
}
priv, mx, my, err := elliptic.GenerateKey(ka.curve, config.rand())
if err != nil {
return nil, nil, err
}
x, _ := ka.curve.ScalarMult(ka.x, ka.y, priv)
preMasterSecret := make([]byte, (ka.curve.Params().BitSize+7)>>3)
xBytes := x.Bytes()
copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
serialized := elliptic.Marshal(ka.curve, mx, my)
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, 1+len(serialized))
ckx.ciphertext[0] = byte(len(serialized))
copy(ckx.ciphertext[1:], serialized)
return preMasterSecret, ckx, nil
}