@@ -1154,9 +1154,14 @@ plt.title('3D plot of $z = x^2 + y^2$')
1154
1154
1155
1155
* 使用np.linspace()使t ∈ [ 0,2π] 。 然后给 (Use np.linspace0 to make t ∈ [ 0,2π] . Then give)
1156
1156
1157
- ![ 2] ( https://github.com/MurphyWan/Python-first-Practice/blob/master/images/3days_img017_2.jpg )
1157
+
1158
+ ![ 2] ( https://github.com/MurphyWan/Python-first-Practice/blob/master/images/3days_img017_2.jpg )
1158
1159
1159
- - 针对X绘Y。 在这个情节中添加一个称为“Heart”的标题。 (Plot y against x. Add a title to this plot which is called "Heart" .)
1160
+
1161
+
1162
+ - 针对X绘Y。 在这个情节中添加一个称为“Heart”的标题。 (Plot y against x. Add a title to this plot which is called "Heart" .)
1163
+
1164
+
1160
1165
1161
1166
* 针对x∈[ -10,10] , y∈[ -10,10] , 绘制3D函数 (Plot the 3D function for x∈[ -10,10] , y∈[ -10,10] )
1162
1167
@@ -1170,7 +1175,7 @@ plt.title('3D plot of $z = x^2 + y^2$')
1170
1175
1171
1176
1172
1177
1173
-
1178
+ ## Sympy
1174
1179
1175
1180
1176
1181
@@ -1184,12 +1189,20 @@ plt.title('3D plot of $z = x^2 + y^2$')
1184
1189
1185
1190
1186
1191
1192
+
1193
+
1187
1194
``` python
1188
1195
```
1189
1196
1190
1197
1191
1198
1199
+ ## 符号计算 (Symbolic computation)
1192
1200
1201
+ * 到目前为止,我们只考虑了数值计算。 (So far, we only considered the numerical computation.)
1202
+
1203
+ * Python也可以通过模块表征进行符号计算。(Python can also work with symbolic computation via module sympy.)
1204
+
1205
+ * 符号计算可用于计算方程,积分等的显式解。 (Symbolic computation can be useful for calculating explicit solutions to equations, integrations and so on.)
1193
1206
1194
1207
1195
1208
@@ -1199,8 +1212,24 @@ plt.title('3D plot of $z = x^2 + y^2$')
1199
1212
```
1200
1213
1201
1214
1215
+ ## 声明一个符号变量 (Declare a symbol variable)
1216
+
1217
+ ``` python
1218
+
1219
+ import sympy as sy
1202
1220
1221
+ # 声明x,y为变量
1222
+ x = sy.Symbol(' x' )
1223
+ y = sy.Symbol(' y' )
1224
+ a, b = sy.symbols(' a b' )
1203
1225
1226
+ # 创建一个新符号(不是函数
1227
+ f = x** 2 + 2 - 2 * x + x** 2 - 1
1228
+ print (f)
1229
+ # 自动简化
1230
+ g = x** 2 + 2 - 2 * x + x** 2 - 1
1231
+ print (g)
1232
+ ```
1204
1233
1205
1234
1206
1235
@@ -1210,8 +1239,23 @@ plt.title('3D plot of $z = x^2 + y^2$')
1210
1239
```
1211
1240
1212
1241
1242
+ ## Use of symbol 1: Solve equations
1213
1243
1244
+ ``` python
1214
1245
1246
+ import sympy as sy
1247
+
1248
+ x = sy.Symbol (' x' )
1249
+ y = sy.Symbol(' y' )
1250
+ # give [-1, 1]
1251
+ print (sy.solve (x** 2 - 1 ))
1252
+ # no guarantee for solution
1253
+ print (sy.solve(x** 3 + 0.5 * x** 2 - 1 ))
1254
+ # exepress x in terms of y
1255
+ print (sy.solve(x** 3 + y** 2 ))
1256
+ # error: no algorithm can be found
1257
+ print (sy.solve(x** x + 2 * x - 1 ))
1258
+ ```
1215
1259
1216
1260
1217
1261
@@ -1221,8 +1265,46 @@ plt.title('3D plot of $z = x^2 + y^2$')
1221
1265
1222
1266
1223
1267
1268
+ ## Use of symbol 2: Integration
1269
+
1270
+ ``` python
1271
+ import sympy as sy
1272
+ x = sy.Symbol(' x' )
1273
+ y = sy.Symbol( ' y' )
1274
+ b = sy.symbols ( ' a b' )
1275
+ # single variable
1276
+ f = sy.sin(x) + sy.exp(x)
1277
+ print (sy.integrate(f, (x, a, b)))
1278
+ print (sy.integrate(f, (x, 1 , 2 )))
1279
+ print (sy.integrate(f, (x, 1.0 ,2.0 )))
1280
+ # multi variables
1281
+ g = sy.exp(x) + x * sy.sin(y)
1282
+ print (sy.integrate(g, (y,a,b)))
1283
+ ```
1224
1284
1225
1285
1226
1286
1227
1287
``` python
1228
1288
```
1289
+
1290
+
1291
+ ## Use of symbol 2: Differentiation
1292
+
1293
+ ``` python
1294
+ import sympy as sy
1295
+ x = sy.Symbol( ' x' )
1296
+ y = sy.Symbol( ' y' )
1297
+ # sing1e variable
1298
+ f = sy.cos(x) + x** x
1299
+ print (sy . diff (f , x))
1300
+ # multi variables
1301
+ g = sy.cos(y) * x + sy.log(y)
1302
+ print (sy.diff (g, y))
1303
+ ```
1304
+
1305
+
1306
+ ``` python
1307
+
1308
+ 第二天结束,辛苦了
1309
+
1310
+ ```
0 commit comments