-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcardio-sem-echo-01.Rmd
202 lines (172 loc) · 5.87 KB
/
cardio-sem-echo-01.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
title: "Análise Dataset de Cárdio"
author: "José Elvano Moraes"
date: "4/27/2021"
output:
html_document: default
pdf_document: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r echo=FALSE}
suppressPackageStartupMessages(expr = library(tidyverse))
suppressPackageStartupMessages(expr = library(haven))
suppressPackageStartupMessages(expr = library(bnlearn))
suppressPackageStartupMessages(expr = library(Rgraphviz))
suppressPackageStartupMessages(expr = library(gRain))
suppressPackageStartupMessages(expr = library(Rmpfr))
suppressPackageStartupMessages(expr = library(readr))
suppressPackageStartupMessages(expr = library(precrec))
suppressPackageStartupMessages(expr = library(ROCR))
suppressPackageStartupMessages(expr = library(epiR))
```
```{r echo=FALSE}
suppressWarnings(
cardio <- read_csv("cardio_train.csv",
col_types = cols(id = col_integer(),
age = col_number(),
gender = col_factor(levels = c("1", "2")),
height = col_number(),
weight = col_number(),
ap_hi = col_number(),
ap_lo = col_number(),
cholesterol = col_factor(levels = c("1", "2", "3")),
gluc = col_factor(levels = c("1", "2", "3")),
smoke = col_factor(levels = c("0","1")),
alco = col_factor(levels = c("0", "1")),
active = col_factor(levels = c("0","1")),
cardio = col_factor(levels = c("0","1")))
)
)
```
```{r echo=FALSE}
colunas <- c("age",
"gender",
"height",
"weight",
"ap_hi",
"ap_lo",
"cholesterol",
"gluc",
"smoke",
"alco",
"active",
"cardio")
```
```{r echo=FALSE}
dd = filter(cardio, ap_hi>0, ap_hi>ap_lo, ap_lo > 0, ap_lo<300, ap_hi>0, ap_hi<300)
set.seed(2)
ccc <- select(dd, age, height, weight, ap_lo, ap_hi)
ccc2 <- discretize(ccc, method = 'hartemink', breaks = 4)
ddf <- cbind(select(dd, -age, -height, -weight, -ap_lo, -ap_hi), ccc2)
ddf <- na.omit(ddf)
ddf$id <- NULL
amostra = ddf[1:7000,]
amostra.test = ddf[7001:nrow(dd),]
amostra.test<-na.omit(amostra.test)
summary(ddf)
```
```{r echo=FALSE}
bn1 <- mmhc(ddf)
```
## Grafo mostrando como nodos coloridos as variáveis das quais a variavel **CARDIO** tem dependência estatística (*Markov blanket*)
```{r echo=FALSE}
graphviz.plot(bn1, shape = 'rectangle',
main = "Markov Blanket - CARDIO",
highlight = list(nodes=mb(bn1, 'cardio'), fill="lightblue"))
```
```{r echo=FALSE}
print("Fase de bootstrap...")
R = 100
arc.strength = boot.strength(ddf, R = R, algorithm = "mmhc")
rede.media = averaged.network(arc.strength)
```
## CDF da correlação (correlação de Pearson) entre os nodos do grafo
```{r echo=FALSE}
plot(arc.strength)
abline(v = 0.75, col = "tomato", lty = 2, lwd = 2)
abline(v = 0.85, col = "steelblue", lty = 2, lwd = 2)
```
## Grafo médio após 100 iterações
```{r echo=FALSE}
par(mfrow = c(1, 2))
strength.plot(rede.media,
arc.strength,
shape = "rectangle")
```
```{r echo=FALSE}
# cado a rede nao seja totalmente direcional (nao seja um DAG) forcar-la a ser
rede.media.dagged <- pdag2dag(rede.media,
ordering = names(ddf))
```
## Grafo médio tornado um *DAG*
```{r echo=FALSE}
graphviz.plot(rede.media.dagged, shape = 'rectangle',
main = "Markov Blanket - CARDIO",
highlight = list(nodes=mb(rede.media.dagged, 'cardio'), fill="lightblue"))
```
## Distribuiçaõ estatística (PDF) de cada variável
```{r echo=FALSE}
fitted.m <- bn.fit(rede.media.dagged, amostra)
graphviz.chart(fitted.m,
type = "barprob",
col = "darkblue",
bg = "azure",
bar.col = "darkblue",
main = "DAG sem WL")
```
# predição
```{r echo=FALSE}
# rede.media.test.dagged <- pdag2dag(rede.media.test,
# ordering = names(amostra.test))
#USAR fit da rede da amostra learn, nao test
fitt <- bn.fit(rede.media.dagged, ddf)
amostra.test.resul <- amostra.test
amostra.test.resul$CARDIO.PRED <- -1
nodos <- amostra.test[, mb(rede.media.dagged, 'cardio')]
nodes.evidencias <- mb(rede.media.dagged, 'cardio')
junction = compile(as.grain(fitt))
x<-c()
for (ii in c(1:nrow(nodos))) {
jedu = setEvidence(propagate = TRUE, junction,
nodes = nodes.evidencias,
states = c(as.character(nodos[ii,1]),
as.character(nodos[ii,2]),
as.character(nodos[ii,3])#,
#as.character(nodos[ii,4]),
#as.character(nodos[ii,5])
))
z <- querygrain(jedu, nodes = c("cardio"))
zz <- z$cardio
x[ii] <- zz[1]
amostra.test.resul$CARDIO.PRED[ii] <- x[ii]
}
```
## Desempenho estatístico da rede bayesiana
```{r echo=FALSE}
amostra.test.resul$PREDICAO <- ifelse(amostra.test.resul$CARDIO.PRED>0.5, 0, 1)
v <- amostra.test.resul[,c('cardio', 'PREDICAO')]
# da lib epiR
print(epi.tests(table(v), conf.level = 0.95))
```
## Curva ROC
```{r echo=FALSE}
# Da library ROCR
pred <- prediction(1-x, v$cardio)
perf <- performance(pred,"tpr","fpr")
plot(perf,
colorize=FALSE,
main="Curva ROC",
xlab = "Taxa de falsos positivos",
ylab = "Taxa de verdeiro positivos")
```
## Outra implementação de curva ROC e outras estatísticas
```{r echo=FALSE}
# da lib precrec
precrec_obj <- evalmod(scores = 1-x, labels = v$cardio)
autoplot(precrec_obj)
precrec_obj2 <- evalmod(scores = 1-x, labels = v$cardio, mode="basic")
autoplot(precrec_obj2)
```
Þ