forked from AI4Finance-Foundation/FinRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
161 lines (139 loc) · 4.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import ray
from finrl.drl_agents.elegantrl.models import DRLAgent as DRLAgent_erl
from finrl.drl_agents.rllib.models import DRLAgent as DRLAgent_rllib
from finrl.drl_agents.stablebaselines3.models import DRLAgent as DRLAgent_sb3
from finrl.finrl_meta.data_processor import DataProcessor
def train(
start_date,
end_date,
ticker_list,
data_source,
time_interval,
technical_indicator_list,
drl_lib,
env,
model_name,
if_vix=True,
**kwargs
):
# fetch data
DP = DataProcessor(data_source, **kwargs)
data = DP.download_data(ticker_list, start_date, end_date, time_interval)
data = DP.clean_data(data)
data = DP.add_technical_indicator(data, technical_indicator_list)
if if_vix:
data = DP.add_vix(data)
price_array, tech_array, turbulence_array = DP.df_to_array(data, if_vix)
env_config = {
"price_array": price_array,
"tech_array": tech_array,
"turbulence_array": turbulence_array,
"if_train": True,
}
env_instance = env(config=env_config)
# read parameters
cwd = kwargs.get("cwd", "./" + str(model_name))
if drl_lib == "elegantrl":
break_step = kwargs.get("break_step", 1e6)
erl_params = kwargs.get("erl_params")
agent = DRLAgent_erl(
env=env,
price_array=price_array,
tech_array=tech_array,
turbulence_array=turbulence_array,
)
model = agent.get_model(model_name, model_kwargs=erl_params)
trained_model = agent.train_model(
model=model, cwd=cwd, total_timesteps=break_step
)
elif drl_lib == "rllib":
total_episodes = kwargs.get("total_episodes", 100)
rllib_params = kwargs.get("rllib_params")
agent_rllib = DRLAgent_rllib(
env=env,
price_array=price_array,
tech_array=tech_array,
turbulence_array=turbulence_array,
)
model, model_config = agent_rllib.get_model(model_name)
model_config["lr"] = rllib_params["lr"]
model_config["train_batch_size"] = rllib_params["train_batch_size"]
model_config["gamma"] = rllib_params["gamma"]
# ray.shutdown()
trained_model = agent_rllib.train_model(
model=model,
model_name=model_name,
model_config=model_config,
total_episodes=total_episodes,
)
trained_model.save(cwd)
elif drl_lib == "stable_baselines3":
total_timesteps = kwargs.get("total_timesteps", 1e6)
agent_params = kwargs.get("agent_params")
agent = DRLAgent_sb3(env=env_instance)
model = agent.get_model(model_name, model_kwargs=agent_params)
trained_model = agent.train_model(
model=model, tb_log_name=model_name, total_timesteps=total_timesteps
)
print("Training finished!")
trained_model.save(cwd)
print("Trained model saved in " + str(cwd))
else:
raise ValueError("DRL library input is NOT supported. Please check.")
if __name__ == "__main__":
from finrl.apps.config import DOW_30_TICKER
from finrl.apps.config import TECHNICAL_INDICATORS_LIST
from finrl.apps.config import TRAIN_START_DATE
from finrl.apps.config import TRAIN_END_DATE
from finrl.apps.config import ERL_PARAMS
from finrl.apps.config import RLlib_PARAMS
from finrl.apps.config import SAC_PARAMS
# construct environment
from finrl.finrl_meta.env_stock_trading.env_stocktrading_np import StockTradingEnv
env = StockTradingEnv
# demo for elegantrl
train(
start_date=TRAIN_START_DATE,
end_date=TRAIN_END_DATE,
ticker_list=DOW_30_TICKER,
data_source="yahoofinance",
time_interval="1D",
technical_indicator_list=TECHNICAL_INDICATORS_LIST,
drl_lib="elegantrl",
env=env,
model_name="ppo",
cwd="./test_ppo",
erl_params=ERL_PARAMS,
break_step=1e5,
)
# demo for rllib
ray.shutdown() # always shutdown previous session if any
train(
start_date=TRAIN_START_DATE,
end_date=TRAIN_END_DATE,
ticker_list=DOW_30_TICKER,
data_source="yahoofinance",
time_interval="1D",
technical_indicator_list=TECHNICAL_INDICATORS_LIST,
drl_lib="rllib",
env=env,
model_name="ppo",
cwd="./test_ppo",
rllib_params=RLlib_PARAMS,
total_episodes=30,
)
# demo for stable-baselines3
train(
start_date=TRAIN_START_DATE,
end_date=TRAIN_END_DATE,
ticker_list=DOW_30_TICKER,
data_source="yahoofinance",
time_interval="1D",
technical_indicator_list=TECHNICAL_INDICATORS_LIST,
drl_lib="stable_baselines3",
env=env,
model_name="sac",
cwd="./test_sac",
agent_params=SAC_PARAMS,
total_timesteps=1e4,
)