forked from ML4ITS/mtad-gat-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
173 lines (148 loc) · 6.42 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import json
import datetime
from args import get_parser, str2bool
from utils import *
from mtad_gat import MTAD_GAT
from prediction import Predictor
if __name__ == "__main__":
parser = get_parser()
parser.add_argument("--model_id", type=str, default=None,
help="ID (datetime) of pretrained model to use, '-1' for latest, '-2' for second latest, etc")
parser.add_argument("--load_scores", type=str2bool, default=False, help="To use already computed anomaly scores")
parser.add_argument("--save_output", type=str2bool, default=False)
args = parser.parse_args()
print(args)
dataset = args.dataset
if args.model_id is None:
if dataset == 'SMD':
dir_path = f"./output/{dataset}/{args.group}"
else:
dir_path = f"./output/{dataset}"
dir_content = os.listdir(dir_path)
subfolders = [subf for subf in dir_content if os.path.isdir(f"{dir_path}/{subf}") and subf != "logs"]
date_times = [datetime.datetime.strptime(subf, '%d%m%Y_%H%M%S') for subf in subfolders]
date_times.sort()
model_datetime = date_times[-1]
model_id = model_datetime.strftime('%d%m%Y_%H%M%S')
else:
model_id = args.model_id
if dataset == "SMD":
model_path = f"./output/{dataset}/{args.group}/{model_id}"
elif dataset in ['MSL', 'SMAP']:
model_path = f"./output/{dataset}/{model_id}"
else:
raise Exception(f'Dataset "{dataset}" not available.')
# Check that model exist
if not os.path.isfile(f"{model_path}/model.pt"):
raise Exception(f"<{model_path}/model.pt> does not exist.")
# Get configs of model
print(f'Using model from {model_path}')
model_parser = argparse.ArgumentParser()
model_args, unknown = model_parser.parse_known_args()
model_args_path = f"{model_path}/config.txt"
with open(model_args_path, "r") as f:
model_args.__dict__ = json.load(f)
window_size = model_args.lookback
# Check that model is trained on specified dataset
if args.dataset.lower() != model_args.dataset.lower():
raise Exception(f"Model trained on {model_args.dataset}, but asked to predict {args.dataset}.")
elif args.dataset == "SMD" and args.group != model_args.group:
print(f"Model trained on SMD group {model_args.group}, but asked to predict SMD group {args.group}.")
window_size = model_args.lookback
normalize = model_args.normalize
n_epochs = model_args.epochs
batch_size = model_args.bs
init_lr = model_args.init_lr
val_split = model_args.val_split
shuffle_dataset = model_args.shuffle_dataset
use_cuda = model_args.use_cuda
print_every = model_args.print_every
group_index = model_args.group[0]
index = model_args.group[2:]
args_summary = str(model_args.__dict__)
if dataset == "SMD":
(x_train, _), (x_test, y_test) = get_data(f"machine-{group_index}-{index}", normalize=normalize)
else:
(x_train, _), (x_test, y_test) = get_data(args.dataset, normalize=normalize)
x_train = torch.from_numpy(x_train).float()
x_test = torch.from_numpy(x_test).float()
n_features = x_train.shape[1]
target_dims = get_target_dims(args.dataset)
if target_dims is None:
out_dim = n_features
elif type(target_dims) == int:
out_dim = 1
else:
out_dim = len(target_dims)
train_dataset = SlidingWindowDataset(x_train, window_size, target_dims)
test_dataset = SlidingWindowDataset(x_test, window_size, target_dims)
train_loader, val_loader, test_loader = create_data_loaders(
train_dataset, batch_size, val_split, shuffle_dataset, test_dataset=test_dataset
)
train_dataset = SlidingWindowDataset(x_train, window_size, target_dims)
test_dataset = SlidingWindowDataset(x_test, window_size, target_dims)
model = MTAD_GAT(
n_features,
window_size,
out_dim,
kernel_size=model_args.kernel_size,
use_gatv2=model_args.use_gatv2,
feat_gat_embed_dim=model_args.feat_gat_embed_dim,
time_gat_embed_dim=model_args.time_gat_embed_dim,
gru_n_layers=model_args.gru_n_layers,
gru_hid_dim=model_args.gru_hid_dim,
forecast_n_layers=model_args.fc_n_layers,
forecast_hid_dim=model_args.fc_hid_dim,
recon_n_layers=model_args.recon_n_layers,
recon_hid_dim=model_args.recon_hid_dim,
dropout=model_args.dropout,
alpha=model_args.alpha
)
device = "cuda" if args.use_cuda and torch.cuda.is_available() else "cpu"
load(model, f"{model_path}/model.pt", device=device)
model.to(device)
# Some suggestions for POT args
level_q_dict = {
"SMAP": (0.90, 0.005),
"MSL": (0.90, 0.001),
"SMD-1": (0.9950, 0.001),
"SMD-2": (0.9925, 0.001),
"SMD-3": (0.9999, 0.001)
}
key = "SMD-" + args.group[0] if args.dataset == "SMD" else args.dataset
level, q = level_q_dict[key]
if args.level is not None:
level = args.level
if args.q is not None:
q = args.q
# Some suggestions for Epsilon args
reg_level_dict = {"SMAP": 0, "MSL": 0, "SMD-1": 1, "SMD-2": 1, "SMD-3": 1}
key = "SMD-" + args.group[0] if dataset == "SMD" else dataset
reg_level = reg_level_dict[key]
prediction_args = {
'dataset': dataset,
"target_dims": target_dims,
'scale_scores': args.scale_scores,
"level": level,
"q": q,
'dynamic_pot': args.dynamic_pot,
"use_mov_av": args.use_mov_av,
"gamma": args.gamma,
"reg_level": reg_level,
"save_path": f"{model_path}",
}
# Creating a new summary-file each time when new prediction are made with a pre-trained model
count = 0
for filename in os.listdir(model_path):
if filename.startswith("summary"):
count += 1
if count == 0:
summary_file_name = "summary.txt"
else:
summary_file_name = f"summary_{count}.txt"
label = y_test[window_size:] if y_test is not None else None
predictor = Predictor(model, window_size, n_features, prediction_args, summary_file_name=summary_file_name)
predictor.predict_anomalies(x_train, x_test, label,
load_scores=args.load_scores,
save_output=args.save_output)