|
| 1 | +#!/usr/bin/env python |
| 2 | +# -*- coding:UTF-8 |
| 3 | + |
| 4 | +__author__ = 'shenshijun' |
| 5 | +from ssj.lib.queue import Queue |
| 6 | +from ssj.graph import GraphError |
| 7 | + |
| 8 | + |
| 9 | +class Vertex(object): |
| 10 | + def __init__(self, key, weight=None): |
| 11 | + """ |
| 12 | + adjust_list 表示邻接节点 |
| 13 | + """ |
| 14 | + self.key = key |
| 15 | + self.weight_list = [] |
| 16 | + self.adjust_list = [] |
| 17 | + self.in_degree = 0 |
| 18 | + self.backup_in_degree = self.in_degree |
| 19 | + self.out_degree = 0 |
| 20 | + self.backup_out_degree = self.out_degree |
| 21 | + self.dist = 0 |
| 22 | + |
| 23 | + def add_adjust(self, to_vertex): |
| 24 | + self.adjust_list.append(to_vertex) |
| 25 | + self.out_degree += 1 |
| 26 | + self.backup_out_degree += 1 |
| 27 | + |
| 28 | + |
| 29 | +class Digraph(object): |
| 30 | + def __init__(self): |
| 31 | + self._vertexes = {} |
| 32 | + |
| 33 | + def add_vertex(self, key): |
| 34 | + """ |
| 35 | + Args: |
| 36 | + :param key:顶点关键字 |
| 37 | + Returns: |
| 38 | + :rtype: bool |
| 39 | + """ |
| 40 | + if key in self._vertexes: |
| 41 | + return False |
| 42 | + else: |
| 43 | + self._vertexes[key] = Vertex(key) |
| 44 | + return True |
| 45 | + |
| 46 | + def add_edge(self, from_key, to_key): |
| 47 | + # 首先把两个节点查入到图中 |
| 48 | + self.add_vertex(from_key) |
| 49 | + self.add_vertex(to_key) |
| 50 | + self._vertexes[from_key].add_adjust(self._vertexes[to_key]) |
| 51 | + self._vertexes[to_key].in_degree += 1 |
| 52 | + self._vertexes[to_key].backup_in_degree += 1 |
| 53 | + |
| 54 | + def top_sort(self, func): |
| 55 | + zero_in_degree_queue = Queue() |
| 56 | + |
| 57 | + # 首先找到所有入度为0的顶点,遍历从这里开始 |
| 58 | + for key, vertex in self._vertexes.iteritems(): |
| 59 | + vertex.backup_in_degree = vertex.in_degree |
| 60 | + if vertex.in_degree is 0: |
| 61 | + zero_in_degree_queue.enter(vertex) |
| 62 | + |
| 63 | + if zero_in_degree_queue.empty(): |
| 64 | + raise GraphError('图中有环,无法执行图的拓扑排序') |
| 65 | + |
| 66 | + result = [] |
| 67 | + while not zero_in_degree_queue.empty(): |
| 68 | + zero_vertex = zero_in_degree_queue.exit() |
| 69 | + result.append(func(zero_vertex.key)) |
| 70 | + for vertex in zero_vertex.adjust_list: |
| 71 | + vertex.in_degree -= 1 |
| 72 | + if vertex.in_degree is 0: |
| 73 | + zero_in_degree_queue.enter(vertex) |
| 74 | + |
| 75 | + # 恢复 |
| 76 | + for key, vertex in self._vertexes.iteritems(): |
| 77 | + vertex.in_degree = vertex.backup_in_degree |
| 78 | + return result |
| 79 | + |
| 80 | + def bfs(self, key, func): |
| 81 | + next_vertex_queue = Queue() |
| 82 | + for k, vertex in self._vertexes.iteritems(): |
| 83 | + vertex.dist = -1 |
| 84 | + |
| 85 | + result = [] |
| 86 | + self._vertexes[key].dist = 0 |
| 87 | + next_vertex_queue.enter(self._vertexes[key]) |
| 88 | + |
| 89 | + while not next_vertex_queue.empty(): |
| 90 | + vertex = next_vertex_queue.exit() |
| 91 | + result.append(func(vertex.key, vertex.dist)) |
| 92 | + for adjust_vertex in vertex.adjust_list: |
| 93 | + if adjust_vertex.dist is -1: |
| 94 | + adjust_vertex.dist = vertex.dist + 1 |
| 95 | + next_vertex_queue.enter(adjust_vertex) |
| 96 | + |
| 97 | + for k, vertex in self._vertexes.iteritems(): |
| 98 | + if vertex.dist is -1: |
| 99 | + result.extend(self.bfs(vertex.key, func)) |
| 100 | + return result |
| 101 | + |
| 102 | + |
| 103 | +def main(): |
| 104 | + graph = Digraph() |
| 105 | + graph.add_edge('v1', 'v2') |
| 106 | + graph.add_edge('v1', 'v3') |
| 107 | + graph.add_edge('v1', 'v4') |
| 108 | + graph.add_edge('v2', 'v4') |
| 109 | + graph.add_edge('v4', 'v3') |
| 110 | + graph.add_edge('v4', 'v7') |
| 111 | + graph.add_edge('v4', 'v6') |
| 112 | + graph.add_edge('v3', 'v6') |
| 113 | + graph.add_edge('v2', 'v5') |
| 114 | + graph.add_edge('v5', 'v4') |
| 115 | + graph.add_edge('v5', 'v7') |
| 116 | + graph.add_edge('v7', 'v6') |
| 117 | + print graph.top_sort(lambda key: key) |
| 118 | + print graph.bfs('v1', lambda key, dist: (key, dist)) |
| 119 | + |
| 120 | + |
| 121 | +if __name__ == "__main__": |
| 122 | + main() |
0 commit comments