-
Notifications
You must be signed in to change notification settings - Fork 44
/
RS3Mamba.py
592 lines (474 loc) · 23.6 KB
/
RS3Mamba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from model.SwinUMamba import VSSMEncoder
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import timm
import re
class ConvBNReLU(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False):
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
norm_layer(out_channels),
nn.ReLU6()
)
class ConvBN(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False):
super(ConvBN, self).__init__(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
norm_layer(out_channels)
)
class Conv(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False):
super(Conv, self).__init__(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)
)
class SeparableConvBNReLU(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
norm_layer=nn.BatchNorm2d):
super(SeparableConvBNReLU, self).__init__(
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
groups=in_channels, bias=False),
norm_layer(out_channels),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.ReLU6()
)
class SeparableConvBN(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
norm_layer=nn.BatchNorm2d):
super(SeparableConvBN, self).__init__(
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
groups=in_channels, bias=False),
norm_layer(out_channels),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
)
class SeparableConv(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
super(SeparableConv, self).__init__(
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
groups=in_channels, bias=False),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True)
self.drop = nn.Dropout(drop, inplace=True)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class GlobalLocalAttention(nn.Module):
def __init__(self,
dim=256,
num_heads=16,
qkv_bias=False,
window_size=8,
relative_pos_embedding=True
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // self.num_heads
self.scale = head_dim ** -0.5
self.ws = window_size
self.qkv = Conv(dim, 3*dim, kernel_size=1, bias=qkv_bias)
self.local1 = ConvBN(dim, dim, kernel_size=3)
self.local2 = ConvBN(dim, dim, kernel_size=1)
self.proj = SeparableConvBN(dim, dim, kernel_size=window_size)
self.attn_x = nn.AvgPool2d(kernel_size=(window_size, 1), stride=1, padding=(window_size//2 - 1, 0))
self.attn_y = nn.AvgPool2d(kernel_size=(1, window_size), stride=1, padding=(0, window_size//2 - 1))
self.relative_pos_embedding = relative_pos_embedding
if self.relative_pos_embedding:
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.ws)
coords_w = torch.arange(self.ws)
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.ws - 1 # shift to start from 0
relative_coords[:, :, 1] += self.ws - 1
relative_coords[:, :, 0] *= 2 * self.ws - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
trunc_normal_(self.relative_position_bias_table, std=.02)
def pad(self, x, ps):
_, _, H, W = x.size()
if W % ps != 0:
x = F.pad(x, (0, ps - W % ps), mode='reflect')
if H % ps != 0:
x = F.pad(x, (0, 0, 0, ps - H % ps), mode='reflect')
return x
def pad_out(self, x):
x = F.pad(x, pad=(0, 1, 0, 1), mode='reflect')
return x
def forward(self, x):
B, C, H, W = x.shape
local = self.local2(x) + self.local1(x)
x = self.pad(x, self.ws)
B, C, Hp, Wp = x.shape
qkv = self.qkv(x)
q, k, v = rearrange(qkv, 'b (qkv h d) (hh ws1) (ww ws2) -> qkv (b hh ww) h (ws1 ws2) d', h=self.num_heads,
d=C//self.num_heads, hh=Hp//self.ws, ww=Wp//self.ws, qkv=3, ws1=self.ws, ws2=self.ws)
dots = (q @ k.transpose(-2, -1)) * self.scale
if self.relative_pos_embedding:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.ws * self.ws, self.ws * self.ws, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
dots += relative_position_bias.unsqueeze(0)
attn = dots.softmax(dim=-1)
attn = attn @ v
attn = rearrange(attn, '(b hh ww) h (ws1 ws2) d -> b (h d) (hh ws1) (ww ws2)', h=self.num_heads,
d=C//self.num_heads, hh=Hp//self.ws, ww=Wp//self.ws, ws1=self.ws, ws2=self.ws)
attn = attn[:, :, :H, :W]
out = self.attn_x(F.pad(attn, pad=(0, 0, 0, 1), mode='reflect')) + \
self.attn_y(F.pad(attn, pad=(0, 1, 0, 0), mode='reflect'))
out = out + local
out = self.pad_out(out)
out = self.proj(out)
# print(out.size())
out = out[:, :, :H, :W]
return out
class Block(nn.Module):
def __init__(self, dim=256, num_heads=16, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, window_size=8):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = GlobalLocalAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, window_size=window_size)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class WF(nn.Module):
def __init__(self, in_channels=128, decode_channels=128, eps=1e-8):
super(WF, self).__init__()
self.pre_conv = Conv(in_channels, decode_channels, kernel_size=1)
self.weights = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.eps = eps
self.post_conv = ConvBNReLU(decode_channels, decode_channels, kernel_size=3)
def forward(self, x, res):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
weights = nn.ReLU()(self.weights)
fuse_weights = weights / (torch.sum(weights, dim=0) + self.eps)
x = fuse_weights[0] * self.pre_conv(res) + fuse_weights[1] * x
x = self.post_conv(x)
return x
class FeatureRefinementHead(nn.Module):
def __init__(self, in_channels=64, decode_channels=64):
super().__init__()
self.pre_conv = Conv(in_channels, decode_channels, kernel_size=1)
self.weights = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.eps = 1e-8
self.post_conv = ConvBNReLU(decode_channels, decode_channels, kernel_size=3)
self.pa = nn.Sequential(nn.Conv2d(decode_channels, decode_channels, kernel_size=3, padding=1, groups=decode_channels),
nn.Sigmoid())
self.ca = nn.Sequential(nn.AdaptiveAvgPool2d(1),
Conv(decode_channels, decode_channels//16, kernel_size=1),
nn.ReLU6(),
Conv(decode_channels//16, decode_channels, kernel_size=1),
nn.Sigmoid())
self.shortcut = ConvBN(decode_channels, decode_channels, kernel_size=1)
self.proj = SeparableConvBN(decode_channels, decode_channels, kernel_size=3)
self.act = nn.ReLU6()
def forward(self, x, res):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
weights = nn.ReLU()(self.weights)
fuse_weights = weights / (torch.sum(weights, dim=0) + self.eps)
x = fuse_weights[0] * self.pre_conv(res) + fuse_weights[1] * x
x = self.post_conv(x)
shortcut = self.shortcut(x)
pa = self.pa(x) * x
ca = self.ca(x) * x
x = pa + ca
x = self.proj(x) + shortcut
x = self.act(x)
return x
class AuxHead(nn.Module):
def __init__(self, in_channels=64, num_classes=8):
super().__init__()
self.conv = ConvBNReLU(in_channels, in_channels)
self.drop = nn.Dropout(0.1)
self.conv_out = Conv(in_channels, num_classes, kernel_size=1)
def forward(self, x, h, w):
feat = self.conv(x)
feat = self.drop(feat)
feat = self.conv_out(feat)
feat = F.interpolate(feat, size=(h, w), mode='bilinear', align_corners=False)
return feat
class Decoder(nn.Module):
def __init__(self,
encoder_channels=(64, 128, 256, 512),
decode_channels=64,
dropout=0.1,
window_size=8,
num_classes=6):
super(Decoder, self).__init__()
self.pre_conv = ConvBN(encoder_channels[-1], decode_channels, kernel_size=1)
self.b4 = Block(dim=decode_channels, num_heads=8, window_size=window_size)
self.b3 = Block(dim=decode_channels, num_heads=8, window_size=window_size)
self.p3 = WF(encoder_channels[-2], decode_channels)
self.b2 = Block(dim=decode_channels, num_heads=8, window_size=window_size)
self.p2 = WF(encoder_channels[-3], decode_channels)
self.p1 = FeatureRefinementHead(encoder_channels[-4], decode_channels)
self.segmentation_head = nn.Sequential(ConvBNReLU(decode_channels, decode_channels),
nn.Dropout2d(p=dropout, inplace=True),
Conv(decode_channels, num_classes, kernel_size=1))
self.init_weight()
def forward(self, res1, res2, res3, res4, h, w):
x = self.b4(self.pre_conv(res4))
x = self.p3(x, res3)
x = self.b3(x)
x = self.p2(x, res2)
x = self.b2(x)
x = self.p1(x, res1)
x = self.segmentation_head(x)
x = F.interpolate(x, size=(h, w), mode='bilinear', align_corners=False)
return x
def init_weight(self):
for m in self.children():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, a=1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
class BasicConv(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
bn=True, bias=False):
super(BasicConv, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
self.relu = nn.ReLU() if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class SoftPool2d(nn.Module):
def __init__(self, kernel_size=2, stride=2):
super(SoftPool2d, self).__init__()
self.avgpool = nn.AvgPool2d(kernel_size, stride)
def forward(self, x):
x_exp = torch.exp(x)
x_exp_pool = self.avgpool(x_exp)
x = self.avgpool(x_exp * x)
return x / x_exp_pool
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class ChannelAtt(nn.Module):
def __init__(self, gate_channels, reduction_ratio=2, pool_types=['avg', 'max','soft']):
super(ChannelAtt, self).__init__()
self.gate_channels = gate_channels
self.mlp = nn.Sequential(
Flatten(),
nn.Linear(gate_channels, gate_channels // reduction_ratio),
nn.ReLU()
#nn.Linear(gate_channels // reduction_ratio, gate_channels)
)
self.pool_types = pool_types
self.incr = nn.Linear(gate_channels // reduction_ratio, gate_channels)
def forward(self, x):
channel_att_sum = None
avg_pool = F.avg_pool2d(x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
max_pool = F.max_pool2d(x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
avgpoolmlp = self.mlp(avg_pool)
maxpoolmlp=self.mlp(max_pool)
pooladd = avgpoolmlp+maxpoolmlp
self.pool = SoftPool2d(kernel_size=(x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
soft_pool = self.mlp(self.pool(x))
weightPool = soft_pool * pooladd
# channel_att_sum = self.mlp(weightPool)
channel_att_sum = self.incr(weightPool)
Att = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x)
return Att
class FusionAttention(nn.Module):
def __init__(self,
dim=256,
ssmdims=256,
num_heads=16,
qkv_bias=False,
window_size=8,
relative_pos_embedding=True
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // self.num_heads
self.scale = head_dim ** -0.5
self.ws = window_size
self.qkv = Conv(dim, 3*dim, kernel_size=1, bias=qkv_bias)
self.local1 = ConvBN(ssmdims, dim, kernel_size=3)
self.local2 = ConvBN(ssmdims, dim, kernel_size=1)
self.proj = SeparableConvBN(dim, dim, kernel_size=window_size)
self.attn_x = nn.AvgPool2d(kernel_size=(window_size, 1), stride=1, padding=(window_size//2 - 1, 0))
self.attn_y = nn.AvgPool2d(kernel_size=(1, window_size), stride=1, padding=(0, window_size//2 - 1))
self.relative_pos_embedding = relative_pos_embedding
if self.relative_pos_embedding:
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.ws)
coords_w = torch.arange(self.ws)
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.ws - 1 # shift to start from 0
relative_coords[:, :, 1] += self.ws - 1
relative_coords[:, :, 0] *= 2 * self.ws - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
trunc_normal_(self.relative_position_bias_table, std=.02)
def pad(self, x, ps):
_, _, H, W = x.size()
if W % ps != 0:
x = F.pad(x, (0, ps - W % ps), mode='reflect')
if H % ps != 0:
x = F.pad(x, (0, 0, 0, ps - H % ps), mode='reflect')
return x
def pad_out(self, x):
x = F.pad(x, pad=(0, 1, 0, 1), mode='reflect')
return x
def forward(self, x, y):
## x from res, need global; y from smm, need local
B, C, H, W = x.shape
local = self.local2(y) + self.local1(y)
x = self.pad(x, self.ws)
B, C, Hp, Wp = x.shape
qkv = self.qkv(x)
q, k, v = rearrange(qkv, 'b (qkv h d) (hh ws1) (ww ws2) -> qkv (b hh ww) h (ws1 ws2) d', h=self.num_heads,
d=C//self.num_heads, hh=Hp//self.ws, ww=Wp//self.ws, qkv=3, ws1=self.ws, ws2=self.ws)
dots = (q @ k.transpose(-2, -1)) * self.scale
if self.relative_pos_embedding:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.ws * self.ws, self.ws * self.ws, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
dots += relative_position_bias.unsqueeze(0)
attn = dots.softmax(dim=-1)
attn = attn @ v
attn = rearrange(attn, '(b hh ww) h (ws1 ws2) d -> b (h d) (hh ws1) (ww ws2)', h=self.num_heads,
d=C//self.num_heads, hh=Hp//self.ws, ww=Wp//self.ws, ws1=self.ws, ws2=self.ws)
attn = attn[:, :, :H, :W]
out = self.attn_x(F.pad(attn, pad=(0, 0, 0, 1), mode='reflect')) + \
self.attn_y(F.pad(attn, pad=(0, 1, 0, 0), mode='reflect'))
out = out + local
out = self.pad_out(out)
out = self.proj(out)
# print(out.size())
out = out[:, :, :H, :W]
return out
class FusionBlock(nn.Module):
def __init__(self, dim=256, ssmdims=256, num_heads=16, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, window_size=8):
super().__init__()
self.normx = norm_layer(dim)
self.normy = norm_layer(ssmdims)
self.attn = FusionAttention(dim, ssmdims, num_heads=num_heads, qkv_bias=qkv_bias, window_size=window_size)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
def forward(self, x, y):
x = x + self.drop_path(self.attn(self.normx(x), self.normy(y)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class RS3Mamba(nn.Module):
def __init__(self,
decode_channels=64,
dropout=0.1,
backbone_name='swsl_resnet18',
pretrained=True,
window_size=8,
num_classes=6
):
super().__init__()
self.backbone = timm.create_model(backbone_name, features_only=True, output_stride=32,
out_indices=(1, 2, 3, 4), pretrained=pretrained)
self.conv1 = self.backbone.conv1
self.bn1 = self.backbone.bn1
self.act1 = self.backbone.act1
self.maxpool = self.backbone.maxpool
self.layers = nn.ModuleList()
self.layers.append(self.backbone.layer1)
self.layers.append(self.backbone.layer2)
self.layers.append(self.backbone.layer3)
self.layers.append(self.backbone.layer4)
self.stem = nn.Sequential(
nn.Conv2d(3, 48, kernel_size=7, stride=2, padding=3),
nn.InstanceNorm2d(48, eps=1e-5, affine=True),
)
self.vssm_encoder = VSSMEncoder(patch_size=2, in_chans=48)
encoder_channels = self.backbone.feature_info.channels()
ssm_dims=[96, 192, 384, 768]
self.Fuse = nn.ModuleList()
self.decoder = Decoder(encoder_channels, decode_channels, dropout, window_size, num_classes)
for i in range(4):
fuse = FusionBlock(encoder_channels[i], ssm_dims[i])
self.Fuse.append(fuse)
def forward(self, x):
h, w = x.size()[-2:]
ssmx = self.stem(x)
vss_outs = self.vssm_encoder(ssmx) # 48*128*128, 96*64*64, 192*32*32, 384*16*16, 768*8*8
ress = []
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.maxpool(x)
for i in range(len(self.layers)):
x = self.layers[i](x)
x = self.Fuse[i](x, vss_outs[i+1])
res = x
ress.append(res)
x = self.decoder(ress[0], ress[1], ress[2], ress[3], h, w)
return x
def load_pretrained_ckpt(
model,
ckpt_path="./pretrain/vmamba_tiny_e292.pth"
):
print(f"Loading weights from: {ckpt_path}")
skip_params = ["norm.weight", "norm.bias", "head.weight", "head.bias",
"patch_embed.proj.weight", "patch_embed.proj.bias",
"patch_embed.norm.weight", "patch_embed.norm.weight"]
ckpt = torch.load(ckpt_path, map_location='cpu')
model_dict = model.state_dict()
for k, v in ckpt['model'].items():
if k in skip_params:
print(f"Skipping weights: {k}")
continue
kr = f"vssm_encoder.{k}"
if "downsample" in kr:
i_ds = int(re.findall(r"layers\.(\d+)\.downsample", kr)[0])
kr = kr.replace(f"layers.{i_ds}.downsample", f"downsamples.{i_ds}")
assert kr in model_dict.keys()
if kr in model_dict.keys():
assert v.shape == model_dict[kr].shape, f"Shape mismatch: {v.shape} vs {model_dict[kr].shape}"
model_dict[kr] = v
else:
print(f"Passing weights: {k}")
model.load_state_dict(model_dict)
print('Load vmamba_tiny_e292 Done!')
return model