.. currentmodule:: xarray
The labels associated with :py:class:`~xarray.DataArray` and :py:class:`~xarray.Dataset` objects enables some powerful shortcuts for computation, notably including aggregation and broadcasting by dimension names.
Arithmetic operations with a single DataArray automatically vectorize (like numpy) over all array values:
.. ipython:: python :suppress: import numpy as np import pandas as pd import xarray as xr np.random.seed(123456)
.. ipython:: python arr = xr.DataArray( np.random.RandomState(0).randn(2, 3), [("x", ["a", "b"]), ("y", [10, 20, 30])] ) arr - 3 abs(arr)
You can also use any of numpy's or scipy's many ufunc functions directly on a DataArray:
.. ipython:: python np.sin(arr)
Use :py:func:`~xarray.where` to conditionally switch between values:
.. ipython:: python xr.where(arr > 0, "positive", "negative")
Use @ to perform matrix multiplication:
.. ipython:: python arr @ arr
Data arrays also implement many :py:class:`numpy.ndarray` methods:
.. ipython:: python arr.round(2) arr.T intarr = xr.DataArray([0, 1, 2, 3, 4, 5]) intarr << 2 # only supported for int types intarr >> 1
Xarray represents missing values using the "NaN" (Not a Number) value from NumPy, which is a special floating-point value that indicates a value that is undefined or unrepresentable. There are several methods for handling missing values in xarray:
Xarray objects borrow the :py:meth:`~xarray.DataArray.isnull`, :py:meth:`~xarray.DataArray.notnull`, :py:meth:`~xarray.DataArray.count`, :py:meth:`~xarray.DataArray.dropna`, :py:meth:`~xarray.DataArray.fillna`, :py:meth:`~xarray.DataArray.ffill`, and :py:meth:`~xarray.DataArray.bfill` methods for working with missing data from pandas:
:py:meth:`~xarray.DataArray.isnull` is a method in xarray that can be used to check for missing or null values in an xarray object. It returns a new xarray object with the same dimensions as the original object, but with boolean values indicating where missing values are present.
.. ipython:: python x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"]) x.isnull()
In this example, the third and fourth elements of 'x' are NaN, so the resulting :py:class:`~xarray.DataArray` object has 'True' values in the third and fourth positions and 'False' values in the other positions.
:py:meth:`~xarray.DataArray.notnull` is a method in xarray that can be used to check for non-missing or non-null values in an xarray object. It returns a new xarray object with the same dimensions as the original object, but with boolean values indicating where non-missing values are present.
.. ipython:: python x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"]) x.notnull()
In this example, the first two and the last elements of x are not NaN, so the resulting :py:class:`~xarray.DataArray` object has 'True' values in these positions, and 'False' values in the third and fourth positions where NaN is located.
:py:meth:`~xarray.DataArray.count` is a method in xarray that can be used to count the number of non-missing values along one or more dimensions of an xarray object. It returns a new xarray object with the same dimensions as the original object, but with each element replaced by the count of non-missing values along the specified dimensions.
.. ipython:: python x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"]) x.count()
In this example, 'x' has five elements, but two of them are NaN, so the resulting :py:class:`~xarray.DataArray` object having a single element containing the value '3', which represents the number of non-null elements in x.
:py:meth:`~xarray.DataArray.dropna` is a method in xarray that can be used to remove missing or null values from an xarray object. It returns a new xarray object with the same dimensions as the original object, but with missing values removed.
.. ipython:: python x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"]) x.dropna(dim="x")
In this example, on calling x.dropna(dim="x") removes any missing values and returns a new :py:class:`~xarray.DataArray` object with only the non-null elements [0, 1, 2] of 'x', in the original order.
:py:meth:`~xarray.DataArray.fillna` is a method in xarray that can be used to fill missing or null values in an xarray object with a specified value or method. It returns a new xarray object with the same dimensions as the original object, but with missing values filled.
.. ipython:: python x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"]) x.fillna(-1)
In this example, there are two NaN values in 'x', so calling x.fillna(-1) replaces these values with -1 and returns a new :py:class:`~xarray.DataArray` object with five elements, containing the values [0, 1, -1, -1, 2] in the original order.
:py:meth:`~xarray.DataArray.ffill` is a method in xarray that can be used to forward fill (or fill forward) missing values in an xarray object along one or more dimensions. It returns a new xarray object with the same dimensions as the original object, but with missing values replaced by the last non-missing value along the specified dimensions.
.. ipython:: python x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"]) x.ffill("x")
In this example, there are two NaN values in 'x', so calling x.ffill("x") fills these values with the last non-null value in the same dimension, which are 0 and 1, respectively. The resulting :py:class:`~xarray.DataArray` object has five elements, containing the values [0, 1, 1, 1, 2] in the original order.
:py:meth:`~xarray.DataArray.bfill` is a method in xarray that can be used to backward fill (or fill backward) missing values in an xarray object along one or more dimensions. It returns a new xarray object with the same dimensions as the original object, but with missing values replaced by the next non-missing value along the specified dimensions.
.. ipython:: python x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"]) x.bfill("x")
In this example, there are two NaN values in 'x', so calling x.bfill("x") fills these values with the next non-null value in the same dimension, which are 2 and 2, respectively. The resulting :py:class:`~xarray.DataArray` object has five elements, containing the values [0, 1, 2, 2, 2] in the original order.
Like pandas, xarray uses the float value np.nan
(not-a-number) to represent
missing values.
Xarray objects also have an :py:meth:`~xarray.DataArray.interpolate_na` method for filling missing values via 1D interpolation. It returns a new xarray object with the same dimensions as the original object, but with missing values interpolated.
.. ipython:: python x = xr.DataArray( [0, 1, np.nan, np.nan, 2], dims=["x"], coords={"xx": xr.Variable("x", [0, 1, 1.1, 1.9, 3])}, ) x.interpolate_na(dim="x", method="linear", use_coordinate="xx")
In this example, there are two NaN values in 'x', so calling x.interpolate_na(dim="x", method="linear", use_coordinate="xx") fills these values with interpolated values along the "x" dimension using linear interpolation based on the values of the xx coordinate. The resulting :py:class:`~xarray.DataArray` object has five elements, containing the values [0., 1., 1.05, 1.45, 2.] in the original order. Note that the interpolated values are calculated based on the values of the 'xx' coordinate, which has non-integer values, resulting in non-integer interpolated values.
Note that xarray slightly diverges from the pandas interpolate
syntax by
providing the use_coordinate
keyword which facilitates a clear specification
of which values to use as the index in the interpolation.
Xarray also provides the max_gap
keyword argument to limit the interpolation to
data gaps of length max_gap
or smaller. See :py:meth:`~xarray.DataArray.interpolate_na`
for more.
Aggregation methods have been updated to take a dim argument instead of axis. This allows for very intuitive syntax for aggregation methods that are applied along particular dimension(s):
.. ipython:: python arr.sum(dim="x") arr.std(["x", "y"]) arr.min()
If you need to figure out the axis number for a dimension yourself (say, for wrapping code designed to work with numpy arrays), you can use the :py:meth:`~xarray.DataArray.get_axis_num` method:
.. ipython:: python arr.get_axis_num("y")
These operations automatically skip missing values, like in pandas:
.. ipython:: python xr.DataArray([1, 2, np.nan, 3]).mean()
If desired, you can disable this behavior by invoking the aggregation method
with skipna=False
.
DataArray
objects include a :py:meth:`~xarray.DataArray.rolling` method. This
method supports rolling window aggregation:
.. ipython:: python arr = xr.DataArray(np.arange(0, 7.5, 0.5).reshape(3, 5), dims=("x", "y")) arr
:py:meth:`~xarray.DataArray.rolling` is applied along one dimension using the
name of the dimension as a key (e.g. y
) and the window size as the value
(e.g. 3
). We get back a Rolling
object:
.. ipython:: python arr.rolling(y=3)
Aggregation and summary methods can be applied directly to the Rolling
object:
.. ipython:: python r = arr.rolling(y=3) r.reduce(np.std) r.mean()
Aggregation results are assigned the coordinate at the end of each window by
default, but can be centered by passing center=True
when constructing the
Rolling
object:
.. ipython:: python r = arr.rolling(y=3, center=True) r.mean()
As can be seen above, aggregations of windows which overlap the border of the
array produce nan
s. Setting min_periods
in the call to rolling
changes the minimum number of observations within the window required to have
a value when aggregating:
.. ipython:: python r = arr.rolling(y=3, min_periods=2) r.mean() r = arr.rolling(y=3, center=True, min_periods=2) r.mean()
From version 0.17, xarray supports multidimensional rolling,
.. ipython:: python r = arr.rolling(x=2, y=3, min_periods=2) r.mean()
Tip
Note that rolling window aggregations are faster and use less memory when bottleneck is installed. This only applies to numpy-backed xarray objects with 1d-rolling.
We can also manually iterate through Rolling
objects:
for label, arr_window in r:
# arr_window is a view of x
...
While rolling
provides a simple moving average, DataArray
also supports
an exponential moving average with :py:meth:`~xarray.DataArray.rolling_exp`.
This is similar to pandas' ewm
method. numbagg is required.
arr.rolling_exp(y=3).mean()
The rolling_exp
method takes a window_type
kwarg, which can be 'alpha'
,
'com'
(for center-of-mass
), 'span'
, and 'halflife'
. The default is
span
.
Finally, the rolling object has a construct
method which returns a
view of the original DataArray
with the windowed dimension in
the last position.
You can use this for more advanced rolling operations such as strided rolling,
windowed rolling, convolution, short-time FFT etc.
.. ipython:: python # rolling with 2-point stride rolling_da = r.construct(x="x_win", y="y_win", stride=2) rolling_da rolling_da.mean(["x_win", "y_win"], skipna=False)
Because the DataArray
given by r.construct('window_dim')
is a view
of the original array, it is memory efficient.
You can also use construct
to compute a weighted rolling sum:
.. ipython:: python weight = xr.DataArray([0.25, 0.5, 0.25], dims=["window"]) arr.rolling(y=3).construct(y="window").dot(weight)
Note
numpy's Nan-aggregation functions such as nansum
copy the original array.
In xarray, we internally use these functions in our aggregation methods
(such as .sum()
) if skipna
argument is not specified or set to True.
This means rolling_da.mean('window_dim')
is memory inefficient.
To avoid this, use skipna=False
as the above example.
:py:class:`DataArray` and :py:class:`Dataset` objects include :py:meth:`DataArray.weighted`
and :py:meth:`Dataset.weighted` array reduction methods. They currently
support weighted sum
, mean
, std
, var
and quantile
.
.. ipython:: python coords = dict(month=("month", [1, 2, 3])) prec = xr.DataArray([1.1, 1.0, 0.9], dims=("month",), coords=coords) weights = xr.DataArray([31, 28, 31], dims=("month",), coords=coords)
Create a weighted object:
.. ipython:: python weighted_prec = prec.weighted(weights) weighted_prec
Calculate the weighted sum:
.. ipython:: python weighted_prec.sum()
Calculate the weighted mean:
.. ipython:: python weighted_prec.mean(dim="month")
Calculate the weighted quantile:
.. ipython:: python weighted_prec.quantile(q=0.5, dim="month")
The weighted sum corresponds to:
.. ipython:: python weighted_sum = (prec * weights).sum() weighted_sum
the weighted mean to:
.. ipython:: python weighted_mean = weighted_sum / weights.sum() weighted_mean
the weighted variance to:
.. ipython:: python weighted_var = weighted_prec.sum_of_squares() / weights.sum() weighted_var
and the weighted standard deviation to:
.. ipython:: python weighted_std = np.sqrt(weighted_var) weighted_std
However, the functions also take missing values in the data into account:
.. ipython:: python data = xr.DataArray([np.NaN, 2, 4]) weights = xr.DataArray([8, 1, 1]) data.weighted(weights).mean()
Using (data * weights).sum() / weights.sum()
would (incorrectly) result
in 0.6.
If the weights add up to to 0, sum
returns 0:
.. ipython:: python data = xr.DataArray([1.0, 1.0]) weights = xr.DataArray([-1.0, 1.0]) data.weighted(weights).sum()
and mean
, std
and var
return NaN
:
.. ipython:: python data.weighted(weights).mean()
Note
weights
must be a :py:class:`DataArray` and cannot contain missing values.
Missing values can be replaced manually by weights.fillna(0)
.
:py:class:`DataArray` and :py:class:`Dataset` objects include a :py:meth:`~xarray.DataArray.coarsen` and :py:meth:`~xarray.Dataset.coarsen` methods. This supports block aggregation along multiple dimensions,
.. ipython:: python x = np.linspace(0, 10, 300) t = pd.date_range("1999-12-15", periods=364) da = xr.DataArray( np.sin(x) * np.cos(np.linspace(0, 1, 364)[:, np.newaxis]), dims=["time", "x"], coords={"time": t, "x": x}, ) da
In order to take a block mean for every 7 days along time
dimension and
every 2 points along x
dimension,
.. ipython:: python da.coarsen(time=7, x=2).mean()
:py:meth:`~xarray.DataArray.coarsen` raises an ValueError
if the data
length is not a multiple of the corresponding window size.
You can choose boundary='trim'
or boundary='pad'
options for trimming
the excess entries or padding nan
to insufficient entries,
.. ipython:: python da.coarsen(time=30, x=2, boundary="trim").mean()
If you want to apply a specific function to coordinate, you can pass the
function or method name to coord_func
option,
.. ipython:: python da.coarsen(time=7, x=2, coord_func={"time": "min"}).mean()
You can also :ref:`use coarsen to reshape<reshape.coarsen>` without applying a computation.
Xarray objects have some handy methods for the computation with their coordinates. :py:meth:`~xarray.DataArray.differentiate` computes derivatives by central finite differences using their coordinates,
.. ipython:: python a = xr.DataArray([0, 1, 2, 3], dims=["x"], coords=[[0.1, 0.11, 0.2, 0.3]]) a a.differentiate("x")
This method can be used also for multidimensional arrays,
.. ipython:: python a = xr.DataArray( np.arange(8).reshape(4, 2), dims=["x", "y"], coords={"x": [0.1, 0.11, 0.2, 0.3]} ) a.differentiate("x")
:py:meth:`~xarray.DataArray.integrate` computes integration based on trapezoidal rule using their coordinates,
.. ipython:: python a.integrate("x")
Note
These methods are limited to simple cartesian geometry. Differentiation and integration along multidimensional coordinate are not supported.
Xarray objects provide an interface for performing linear or polynomial regressions using the least-squares method. :py:meth:`~xarray.DataArray.polyfit` computes the best fitting coefficients along a given dimension and for a given order,
.. ipython:: python x = xr.DataArray(np.arange(10), dims=["x"], name="x") a = xr.DataArray(3 + 4 * x, dims=["x"], coords={"x": x}) out = a.polyfit(dim="x", deg=1, full=True) out
The method outputs a dataset containing the coefficients (and more if full=True). The inverse operation is done with :py:meth:`~xarray.polyval`,
.. ipython:: python xr.polyval(coord=x, coeffs=out.polyfit_coefficients)
Note
These methods replicate the behaviour of :py:func:`numpy.polyfit` and :py:func:`numpy.polyval`.
Xarray objects also provide an interface for fitting more complex functions using :py:func:`scipy.optimize.curve_fit`. :py:meth:`~xarray.DataArray.curvefit` accepts user-defined functions and can fit along multiple coordinates.
For example, we can fit a relationship between two DataArray
objects, maintaining
a unique fit at each spatial coordinate but aggregating over the time dimension:
.. ipython:: python def exponential(x, a, xc): return np.exp((x - xc) / a) x = np.arange(-5, 5, 0.1) t = np.arange(-5, 5, 0.1) X, T = np.meshgrid(x, t) Z1 = np.random.uniform(low=-5, high=5, size=X.shape) Z2 = exponential(Z1, 3, X) Z3 = exponential(Z1, 1, -X) ds = xr.Dataset( data_vars=dict( var1=(["t", "x"], Z1), var2=(["t", "x"], Z2), var3=(["t", "x"], Z3) ), coords={"t": t, "x": x}, ) ds[["var2", "var3"]].curvefit( coords=ds.var1, func=exponential, reduce_dims="t", bounds={"a": (0.5, 5), "xc": (-5, 5)}, )
We can also fit multi-dimensional functions, and even use a wrapper function to simultaneously fit a summation of several functions, such as this field containing two gaussian peaks:
.. ipython:: python def gaussian_2d(coords, a, xc, yc, xalpha, yalpha): x, y = coords z = a * np.exp( -np.square(x - xc) / 2 / np.square(xalpha) - np.square(y - yc) / 2 / np.square(yalpha) ) return z def multi_peak(coords, *args): z = np.zeros(coords[0].shape) for i in range(len(args) // 5): z += gaussian_2d(coords, *args[i * 5 : i * 5 + 5]) return z x = np.arange(-5, 5, 0.1) y = np.arange(-5, 5, 0.1) X, Y = np.meshgrid(x, y) n_peaks = 2 names = ["a", "xc", "yc", "xalpha", "yalpha"] names = [f"{name}{i}" for i in range(n_peaks) for name in names] Z = gaussian_2d((X, Y), 3, 1, 1, 2, 1) + gaussian_2d((X, Y), 2, -1, -2, 1, 1) Z += np.random.normal(scale=0.1, size=Z.shape) da = xr.DataArray(Z, dims=["y", "x"], coords={"y": y, "x": x}) da.curvefit( coords=["x", "y"], func=multi_peak, param_names=names, kwargs={"maxfev": 10000}, )
Note
This method replicates the behavior of :py:func:`scipy.optimize.curve_fit`.
DataArray
objects automatically align themselves ("broadcasting" in
the numpy parlance) by dimension name instead of axis order. With xarray, you
do not need to transpose arrays or insert dimensions of length 1 to get array
operations to work, as commonly done in numpy with :py:func:`numpy.reshape` or
:py:data:`numpy.newaxis`.
This is best illustrated by a few examples. Consider two one-dimensional arrays with different sizes aligned along different dimensions:
.. ipython:: python a = xr.DataArray([1, 2], [("x", ["a", "b"])]) a b = xr.DataArray([-1, -2, -3], [("y", [10, 20, 30])]) b
With xarray, we can apply binary mathematical operations to these arrays, and their dimensions are expanded automatically:
.. ipython:: python a * b
Moreover, dimensions are always reordered to the order in which they first appeared:
.. ipython:: python c = xr.DataArray(np.arange(6).reshape(3, 2), [b["y"], a["x"]]) c a + c
This means, for example, that you always subtract an array from its transpose:
.. ipython:: python c - c.T
You can explicitly broadcast xarray data structures by using the :py:func:`~xarray.broadcast` function:
.. ipython:: python a2, b2 = xr.broadcast(a, b) a2 b2
Xarray enforces alignment between index :ref:`coordinates` (that is,
coordinates with the same name as a dimension, marked by *
) on objects used
in binary operations.
Similarly to pandas, this alignment is automatic for arithmetic on binary operations. The default result of a binary operation is by the intersection (not the union) of coordinate labels:
.. ipython:: python arr = xr.DataArray(np.arange(3), [("x", range(3))]) arr + arr[:-1]
If coordinate values for a dimension are missing on either argument, all matching dimensions must have the same size:
.. ipython:: :verbatim: In [1]: arr + xr.DataArray([1, 2], dims="x") ValueError: arguments without labels along dimension 'x' cannot be aligned because they have different dimension size(s) {2} than the size of the aligned dimension labels: 3
However, one can explicitly change this default automatic alignment type ("inner") via :py:func:`~xarray.set_options()` in context manager:
.. ipython:: python with xr.set_options(arithmetic_join="outer"): arr + arr[:1] arr + arr[:1]
Before loops or performance critical code, it's a good idea to align arrays explicitly (e.g., by putting them in the same Dataset or using :py:func:`~xarray.align`) to avoid the overhead of repeated alignment with each operation. See :ref:`align and reindex` for more details.
Note
There is no automatic alignment between arguments when performing in-place
arithmetic operations such as +=
. You will need to use
:ref:`manual alignment<align and reindex>`. This ensures in-place
arithmetic never needs to modify data types.
Although index coordinates are aligned, other coordinates are not, and if their values conflict, they will be dropped. This is necessary, for example, because indexing turns 1D coordinates into scalar coordinates:
.. ipython:: python arr[0] arr[1] # notice that the scalar coordinate 'x' is silently dropped arr[1] - arr[0]
Still, xarray will persist other coordinates in arithmetic, as long as there are no conflicting values:
.. ipython:: python # only one argument has the 'x' coordinate arr[0] + 1 # both arguments have the same 'x' coordinate arr[0] - arr[0]
Datasets support arithmetic operations by automatically looping over all data variables:
.. ipython:: python ds = xr.Dataset( { "x_and_y": (("x", "y"), np.random.randn(3, 5)), "x_only": ("x", np.random.randn(3)), }, coords=arr.coords, ) ds > 0
Datasets support most of the same methods found on data arrays:
.. ipython:: python ds.mean(dim="x") abs(ds)
Datasets also support NumPy ufuncs (requires NumPy v1.13 or newer), or alternatively you can use :py:meth:`~xarray.Dataset.map` to map a function to each variable in a dataset:
.. ipython:: python np.sin(ds) ds.map(np.sin)
Datasets also use looping over variables for broadcasting in binary
arithmetic. You can do arithmetic between any DataArray
and a dataset:
.. ipython:: python ds + arr
Arithmetic between two datasets matches data variables of the same name:
.. ipython:: python ds2 = xr.Dataset({"x_and_y": 0, "x_only": 100}) ds - ds2
Similarly to index based alignment, the result has the intersection of all matching data variables.
It doesn't always make sense to do computation directly with xarray objects:
- In the inner loop of performance limited code, using xarray can add considerable overhead compared to using NumPy or native Python types. This is particularly true when working with scalars or small arrays (less than ~1e6 elements). Keeping track of labels and ensuring their consistency adds overhead, and xarray's core itself is not especially fast, because it's written in Python rather than a compiled language like C. Also, xarray's high level label-based APIs removes low-level control over how operations are implemented.
- Even if speed doesn't matter, it can be important to wrap existing code, or to support alternative interfaces that don't use xarray objects.
For these reasons, it is often well-advised to write low-level routines that work with NumPy arrays, and to wrap these routines to work with xarray objects. However, adding support for labels on both :py:class:`~xarray.Dataset` and :py:class:`~xarray.DataArray` can be a bit of a chore.
To make this easier, xarray supplies the :py:func:`~xarray.apply_ufunc` helper
function, designed for wrapping functions that support broadcasting and
vectorization on unlabeled arrays in the style of a NumPy
universal function ("ufunc" for short).
apply_ufunc
takes care of everything needed for an idiomatic xarray wrapper,
including alignment, broadcasting, looping over Dataset
variables (if
needed), and merging of coordinates. In fact, many internal xarray
functions/methods are written using apply_ufunc
.
Simple functions that act independently on each value should work without any additional arguments:
.. ipython:: python squared_error = lambda x, y: (x - y) ** 2 arr1 = xr.DataArray([0, 1, 2, 3], dims="x") xr.apply_ufunc(squared_error, arr1, 1)
For using more complex operations that consider some array values collectively,
it's important to understand the idea of "core dimensions" from NumPy's
generalized ufuncs. Core dimensions are defined as dimensions
that should not be broadcast over. Usually, they correspond to the fundamental
dimensions over which an operation is defined, e.g., the summed axis in
np.sum
. A good clue that core dimensions are needed is the presence of an
axis
argument on the corresponding NumPy function.
With apply_ufunc
, core dimensions are recognized by name, and then moved to
the last dimension of any input arguments before applying the given function.
This means that for functions that accept an axis
argument, you usually need
to set axis=-1
. As an example, here is how we would wrap
:py:func:`numpy.linalg.norm` to calculate the vector norm:
def vector_norm(x, dim, ord=None):
return xr.apply_ufunc(
np.linalg.norm, x, input_core_dims=[[dim]], kwargs={"ord": ord, "axis": -1}
)
.. ipython:: python :suppress: def vector_norm(x, dim, ord=None): return xr.apply_ufunc( np.linalg.norm, x, input_core_dims=[[dim]], kwargs={"ord": ord, "axis": -1} )
.. ipython:: python vector_norm(arr1, dim="x")
Because apply_ufunc
follows a standard convention for ufuncs, it plays
nicely with tools for building vectorized functions, like
:py:func:`numpy.broadcast_arrays` and :py:class:`numpy.vectorize`. For high performance
needs, consider using :doc:`Numba's vectorize and guvectorize <numba:user/vectorize>`.
In addition to wrapping functions, apply_ufunc
can automatically parallelize
many functions when using dask by setting dask='parallelized'
. See
:ref:`dask.automatic-parallelization` for details.
:py:func:`~xarray.apply_ufunc` also supports some advanced options for controlling alignment of variables and the form of the result. See the docstring for full details and more examples.