.. ipython:: python :suppress: import numpy as np import pandas as pd import xarray as xr np.random.seed(123456)
Xarray offers flexible interpolation routines, which have a similar interface to our :ref:`indexing <indexing>`.
Note
interp
requires scipy installed.
Interpolating a :py:class:`~xarray.DataArray` works mostly like labeled indexing of a :py:class:`~xarray.DataArray`,
.. ipython:: python da = xr.DataArray( np.sin(0.3 * np.arange(12).reshape(4, 3)), [("time", np.arange(4)), ("space", [0.1, 0.2, 0.3])], ) # label lookup da.sel(time=3) # interpolation da.interp(time=2.5)
Similar to the indexing, :py:meth:`~xarray.DataArray.interp` also accepts an array-like, which gives the interpolated result as an array.
.. ipython:: python # label lookup da.sel(time=[2, 3]) # interpolation da.interp(time=[2.5, 3.5])
To interpolate data with a :py:doc:`numpy.datetime64 <numpy:reference/arrays.datetime>` coordinate you can pass a string.
.. ipython:: python da_dt64 = xr.DataArray( [1, 3], [("time", pd.date_range("1/1/2000", "1/3/2000", periods=2))] ) da_dt64.interp(time="2000-01-02")
The interpolated data can be merged into the original :py:class:`~xarray.DataArray` by specifying the time periods required.
.. ipython:: python da_dt64.interp(time=pd.date_range("1/1/2000", "1/3/2000", periods=3))
Interpolation of data indexed by a :py:class:`~xarray.CFTimeIndex` is also allowed. See :ref:`CFTimeIndex` for examples.
Note
Currently, our interpolation only works for regular grids. Therefore, similarly to :py:meth:`~xarray.DataArray.sel`, only 1D coordinates along a dimension can be used as the original coordinate to be interpolated.
Like :py:meth:`~xarray.DataArray.sel`, :py:meth:`~xarray.DataArray.interp` accepts multiple coordinates. In this case, multidimensional interpolation is carried out.
.. ipython:: python # label lookup da.sel(time=2, space=0.1) # interpolation da.interp(time=2.5, space=0.15)
Array-like coordinates are also accepted:
.. ipython:: python # label lookup da.sel(time=[2, 3], space=[0.1, 0.2]) # interpolation da.interp(time=[1.5, 2.5], space=[0.15, 0.25])
:py:meth:`~xarray.DataArray.interp_like` method is a useful shortcut. This
method interpolates an xarray object onto the coordinates of another xarray
object. For example, if we want to compute the difference between
two :py:class:`~xarray.DataArray` s (da
and other
) staying on slightly
different coordinates,
.. ipython:: python other = xr.DataArray( np.sin(0.4 * np.arange(9).reshape(3, 3)), [("time", [0.9, 1.9, 2.9]), ("space", [0.15, 0.25, 0.35])], )
it might be a good idea to first interpolate da
so that it will stay on the
same coordinates of other
, and then subtract it.
:py:meth:`~xarray.DataArray.interp_like` can be used for such a case,
.. ipython:: python # interpolate da along other's coordinates interpolated = da.interp_like(other) interpolated
It is now possible to safely compute the difference other - interpolated
.
We use :py:class:`scipy.interpolate.interp1d` for 1-dimensional interpolation. For multi-dimensional interpolation, an attempt is first made to decompose the interpolation in a series of 1-dimensional interpolations, in which case :py:class:`scipy.interpolate.interp1d` is used. If a decomposition cannot be made (e.g. with advanced interpolation), :py:func:`scipy.interpolate.interpn` is used.
The interpolation method can be specified by the optional method
argument.
.. ipython:: python da = xr.DataArray( np.sin(np.linspace(0, 2 * np.pi, 10)), dims="x", coords={"x": np.linspace(0, 1, 10)}, ) da.plot.line("o", label="original") da.interp(x=np.linspace(0, 1, 100)).plot.line(label="linear (default)") da.interp(x=np.linspace(0, 1, 100), method="cubic").plot.line(label="cubic") @savefig interpolation_sample1.png width=4in plt.legend()
Additional keyword arguments can be passed to scipy's functions.
.. ipython:: python # fill 0 for the outside of the original coordinates. da.interp(x=np.linspace(-0.5, 1.5, 10), kwargs={"fill_value": 0.0}) # 1-dimensional extrapolation da.interp(x=np.linspace(-0.5, 1.5, 10), kwargs={"fill_value": "extrapolate"}) # multi-dimensional extrapolation da = xr.DataArray( np.sin(0.3 * np.arange(12).reshape(4, 3)), [("time", np.arange(4)), ("space", [0.1, 0.2, 0.3])], ) da.interp( time=4, space=np.linspace(-0.1, 0.5, 10), kwargs={"fill_value": "extrapolate"} )
:py:meth:`~xarray.DataArray.interp` accepts :py:class:`~xarray.DataArray` as similar to :py:meth:`~xarray.DataArray.sel`, which enables us more advanced interpolation. Based on the dimension of the new coordinate passed to :py:meth:`~xarray.DataArray.interp`, the dimension of the result are determined.
For example, if you want to interpolate a two dimensional array along a particular dimension, as illustrated below, you can pass two 1-dimensional :py:class:`~xarray.DataArray` s with a common dimension as new coordinate.
For example:
.. ipython:: python da = xr.DataArray( np.sin(0.3 * np.arange(20).reshape(5, 4)), [("x", np.arange(5)), ("y", [0.1, 0.2, 0.3, 0.4])], ) # advanced indexing x = xr.DataArray([0, 2, 4], dims="z") y = xr.DataArray([0.1, 0.2, 0.3], dims="z") da.sel(x=x, y=y) # advanced interpolation, without extrapolation x = xr.DataArray([0.5, 1.5, 2.5, 3.5], dims="z") y = xr.DataArray([0.15, 0.25, 0.35, 0.45], dims="z") da.interp(x=x, y=y)
where values on the original coordinates
(x, y) = ((0.5, 0.15), (1.5, 0.25), (2.5, 0.35), (3.5, 0.45))
are obtained
by the 2-dimensional interpolation and mapped along a new dimension z
. Since
no keyword arguments are passed to the interpolation routine, no extrapolation
is performed resulting in a nan
value.
If you want to add a coordinate to the new dimension z
, you can supply
:py:class:`~xarray.DataArray` s with a coordinate. Extrapolation can be achieved
by passing additional arguments to SciPy's interpnd
function,
.. ipython:: python x = xr.DataArray([0.5, 1.5, 2.5, 3.5], dims="z", coords={"z": ["a", "b", "c", "d"]}) y = xr.DataArray( [0.15, 0.25, 0.35, 0.45], dims="z", coords={"z": ["a", "b", "c", "d"]} ) da.interp(x=x, y=y, kwargs={"fill_value": None})
For the details of the advanced indexing, see :ref:`more advanced indexing <more_advanced_indexing>`.
Our :py:meth:`~xarray.DataArray.interp` works with arrays with NaN
the same way that
scipy.interpolate.interp1d and
scipy.interpolate.interpn do.
linear
and nearest
methods return arrays including NaN,
while other methods such as cubic
or quadratic
return all NaN arrays.
.. ipython:: python da = xr.DataArray([0, 2, np.nan, 3, 3.25], dims="x", coords={"x": range(5)}) da.interp(x=[0.5, 1.5, 2.5]) da.interp(x=[0.5, 1.5, 2.5], method="cubic")
To avoid this, you can drop NaN by :py:meth:`~xarray.DataArray.dropna`, and then make the interpolation
.. ipython:: python dropped = da.dropna("x") dropped dropped.interp(x=[0.5, 1.5, 2.5], method="cubic")
If NaNs are distributed randomly in your multidimensional array, dropping all the columns containing more than one NaNs by :py:meth:`~xarray.DataArray.dropna` may lose a significant amount of information. In such a case, you can fill NaN by :py:meth:`~xarray.DataArray.interpolate_na`, which is similar to :py:meth:`pandas.Series.interpolate`.
.. ipython:: python filled = da.interpolate_na(dim="x") filled
This fills NaN by interpolating along the specified dimension. After filling NaNs, you can interpolate:
.. ipython:: python filled.interp(x=[0.5, 1.5, 2.5], method="cubic")
For the details of :py:meth:`~xarray.DataArray.interpolate_na`, see :ref:`Missing values <missing_values>`.
Let's see how :py:meth:`~xarray.DataArray.interp` works on real data.
.. ipython:: python # Raw data ds = xr.tutorial.open_dataset("air_temperature").isel(time=0) fig, axes = plt.subplots(ncols=2, figsize=(10, 4)) ds.air.plot(ax=axes[0]) axes[0].set_title("Raw data") # Interpolated data new_lon = np.linspace(ds.lon[0], ds.lon[-1], ds.sizes["lon"] * 4) new_lat = np.linspace(ds.lat[0], ds.lat[-1], ds.sizes["lat"] * 4) dsi = ds.interp(lat=new_lat, lon=new_lon) dsi.air.plot(ax=axes[1]) @savefig interpolation_sample3.png width=8in axes[1].set_title("Interpolated data")
Our advanced interpolation can be used to remap the data to the new coordinate. Consider the new coordinates x and z on the two dimensional plane. The remapping can be done as follows
.. ipython:: python # new coordinate x = np.linspace(240, 300, 100) z = np.linspace(20, 70, 100) # relation between new and original coordinates lat = xr.DataArray(z, dims=["z"], coords={"z": z}) lon = xr.DataArray( (x[:, np.newaxis] - 270) / np.cos(z * np.pi / 180) + 270, dims=["x", "z"], coords={"x": x, "z": z}, ) fig, axes = plt.subplots(ncols=2, figsize=(10, 4)) ds.air.plot(ax=axes[0]) # draw the new coordinate on the original coordinates. for idx in [0, 33, 66, 99]: axes[0].plot(lon.isel(x=idx), lat, "--k") for idx in [0, 33, 66, 99]: axes[0].plot(*xr.broadcast(lon.isel(z=idx), lat.isel(z=idx)), "--k") axes[0].set_title("Raw data") dsi = ds.interp(lon=lon, lat=lat) dsi.air.plot(ax=axes[1]) @savefig interpolation_sample4.png width=8in axes[1].set_title("Remapped data")