forked from ashawkey/torch-ngp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gui.py
436 lines (317 loc) · 17.6 KB
/
gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import math
import torch
import numpy as np
import dearpygui.dearpygui as dpg
from scipy.spatial.transform import Rotation as R
from .utils import *
class OrbitCamera:
def __init__(self, W, H, r=2, fovy=60):
self.W = W
self.H = H
self.radius = r # camera distance from center
self.fovy = fovy # in degree
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point
self.rot = R.from_quat([1, 0, 0, 0]) # init camera matrix: [[1, 0, 0], [0, -1, 0], [0, 0, 1]] (to suit ngp convention)
self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized!
# pose
@property
def pose(self):
# first move camera to radius
res = np.eye(4, dtype=np.float32)
res[2, 3] -= self.radius
# rotate
rot = np.eye(4, dtype=np.float32)
rot[:3, :3] = self.rot.as_matrix()
res = rot @ res
# translate
res[:3, 3] -= self.center
return res
# intrinsics
@property
def intrinsics(self):
focal = self.H / (2 * np.tan(np.radians(self.fovy) / 2))
return np.array([focal, focal, self.W // 2, self.H // 2])
def orbit(self, dx, dy):
# rotate along camera up/side axis!
side = self.rot.as_matrix()[:3, 0] # why this is side --> ? # already normalized.
rotvec_x = self.up * np.radians(-0.1 * dx)
rotvec_y = side * np.radians(-0.1 * dy)
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot
def scale(self, delta):
self.radius *= 1.1 ** (-delta)
def pan(self, dx, dy, dz=0):
# pan in camera coordinate system (careful on the sensitivity!)
self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([dx, dy, dz])
class NeRFGUI:
def __init__(self, opt, trainer, train_loader=None, debug=True):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.W = opt.W
self.H = opt.H
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
self.debug = debug
self.bg_color = torch.ones(3, dtype=torch.float32) # default white bg
self.training = False
self.step = 0 # training step
self.trainer = trainer
self.train_loader = train_loader
if train_loader is not None:
self.trainer.error_map = train_loader._data.error_map
self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # camera moved, should reset accumulation
self.spp = 1 # sample per pixel
self.mode = 'image' # choose from ['image', 'depth']
self.dynamic_resolution = True
self.downscale = 1
self.train_steps = 16
dpg.create_context()
self.register_dpg()
self.test_step()
def __del__(self):
dpg.destroy_context()
def train_step(self):
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
outputs = self.trainer.train_gui(self.train_loader, step=self.train_steps)
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.step += self.train_steps
self.need_update = True
dpg.set_value("_log_train_time", f'{t:.4f}ms ({int(1000/t)} FPS)')
dpg.set_value("_log_train_log", f'step = {self.step: 5d} (+{self.train_steps: 2d}), loss = {outputs["loss"]:.4f}, lr = {outputs["lr"]:.5f}')
# dynamic train steps
# max allowed train time per-frame is 500 ms
full_t = t / self.train_steps * 16
train_steps = min(16, max(4, int(16 * 500 / full_t)))
if train_steps > self.train_steps * 1.2 or train_steps < self.train_steps * 0.8:
self.train_steps = train_steps
def prepare_buffer(self, outputs):
if self.mode == 'image':
return outputs['image']
else:
return np.expand_dims(outputs['depth'], -1).repeat(3, -1)
def test_step(self):
# TODO: seems we have to move data from GPU --> CPU --> GPU?
if self.need_update or self.spp < self.opt.max_spp:
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
outputs = self.trainer.test_gui(self.cam.pose, self.cam.intrinsics, self.W, self.H, self.bg_color, self.spp, self.downscale)
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
# update dynamic resolution
if self.dynamic_resolution:
# max allowed infer time per-frame is 200 ms
full_t = t / (self.downscale ** 2)
downscale = min(1, max(1/4, math.sqrt(200 / full_t)))
if downscale > self.downscale * 1.2 or downscale < self.downscale * 0.8:
self.downscale = downscale
if self.need_update:
self.render_buffer = self.prepare_buffer(outputs)
self.spp = 1
self.need_update = False
else:
self.render_buffer = (self.render_buffer * self.spp + self.prepare_buffer(outputs)) / (self.spp + 1)
self.spp += 1
dpg.set_value("_log_infer_time", f'{t:.4f}ms ({int(1000/t)} FPS)')
dpg.set_value("_log_resolution", f'{int(self.downscale * self.W)}x{int(self.downscale * self.H)}')
dpg.set_value("_log_spp", self.spp)
dpg.set_value("_texture", self.render_buffer)
def register_dpg(self):
### register texture
with dpg.texture_registry(show=False):
dpg.add_raw_texture(self.W, self.H, self.render_buffer, format=dpg.mvFormat_Float_rgb, tag="_texture")
### register window
# the rendered image, as the primary window
with dpg.window(tag="_primary_window", width=self.W, height=self.H):
# add the texture
dpg.add_image("_texture")
dpg.set_primary_window("_primary_window", True)
# control window
with dpg.window(label="Control", tag="_control_window", width=400, height=300):
# button theme
with dpg.theme() as theme_button:
with dpg.theme_component(dpg.mvButton):
dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)
# time
if not self.opt.test:
with dpg.group(horizontal=True):
dpg.add_text("Train time: ")
dpg.add_text("no data", tag="_log_train_time")
with dpg.group(horizontal=True):
dpg.add_text("Infer time: ")
dpg.add_text("no data", tag="_log_infer_time")
with dpg.group(horizontal=True):
dpg.add_text("SPP: ")
dpg.add_text("1", tag="_log_spp")
# train button
if not self.opt.test:
with dpg.collapsing_header(label="Train", default_open=True):
# train / stop
with dpg.group(horizontal=True):
dpg.add_text("Train: ")
def callback_train(sender, app_data):
if self.training:
self.training = False
dpg.configure_item("_button_train", label="start")
else:
self.training = True
dpg.configure_item("_button_train", label="stop")
dpg.add_button(label="start", tag="_button_train", callback=callback_train)
dpg.bind_item_theme("_button_train", theme_button)
def callback_reset(sender, app_data):
@torch.no_grad()
def weight_reset(m: nn.Module):
reset_parameters = getattr(m, "reset_parameters", None)
if callable(reset_parameters):
m.reset_parameters()
self.trainer.model.apply(fn=weight_reset)
self.trainer.model.reset_extra_state() # for cuda_ray density_grid and step_counter
self.need_update = True
dpg.add_button(label="reset", tag="_button_reset", callback=callback_reset)
dpg.bind_item_theme("_button_reset", theme_button)
# save ckpt
with dpg.group(horizontal=True):
dpg.add_text("Checkpoint: ")
def callback_save(sender, app_data):
self.trainer.save_checkpoint(full=True, best=False)
dpg.set_value("_log_ckpt", "saved " + os.path.basename(self.trainer.stats["checkpoints"][-1]))
self.trainer.epoch += 1 # use epoch to indicate different calls.
dpg.add_button(label="save", tag="_button_save", callback=callback_save)
dpg.bind_item_theme("_button_save", theme_button)
dpg.add_text("", tag="_log_ckpt")
# save mesh
with dpg.group(horizontal=True):
dpg.add_text("Marching Cubes: ")
def callback_mesh(sender, app_data):
self.trainer.save_mesh(resolution=256, threshold=10)
dpg.set_value("_log_mesh", "saved " + f'{self.trainer.name}_{self.trainer.epoch}.ply')
self.trainer.epoch += 1 # use epoch to indicate different calls.
dpg.add_button(label="mesh", tag="_button_mesh", callback=callback_mesh)
dpg.bind_item_theme("_button_mesh", theme_button)
dpg.add_text("", tag="_log_mesh")
with dpg.group(horizontal=True):
dpg.add_text("", tag="_log_train_log")
# rendering options
with dpg.collapsing_header(label="Options", default_open=True):
# dynamic rendering resolution
with dpg.group(horizontal=True):
def callback_set_dynamic_resolution(sender, app_data):
if self.dynamic_resolution:
self.dynamic_resolution = False
self.downscale = 1
else:
self.dynamic_resolution = True
self.need_update = True
dpg.add_checkbox(label="dynamic resolution", default_value=self.dynamic_resolution, callback=callback_set_dynamic_resolution)
dpg.add_text(f"{self.W}x{self.H}", tag="_log_resolution")
# mode combo
def callback_change_mode(sender, app_data):
self.mode = app_data
self.need_update = True
dpg.add_combo(('image', 'depth'), label='mode', default_value=self.mode, callback=callback_change_mode)
# bg_color picker
def callback_change_bg(sender, app_data):
self.bg_color = torch.tensor(app_data[:3], dtype=torch.float32) # only need RGB in [0, 1]
self.need_update = True
dpg.add_color_edit((255, 255, 255), label="Background Color", width=200, tag="_color_editor", no_alpha=True, callback=callback_change_bg)
# fov slider
def callback_set_fovy(sender, app_data):
self.cam.fovy = app_data
self.need_update = True
dpg.add_slider_int(label="FoV (vertical)", min_value=1, max_value=120, format="%d deg", default_value=self.cam.fovy, callback=callback_set_fovy)
# dt_gamma slider
def callback_set_dt_gamma(sender, app_data):
self.opt.dt_gamma = app_data
self.need_update = True
dpg.add_slider_float(label="dt_gamma", min_value=0, max_value=0.1, format="%.5f", default_value=self.opt.dt_gamma, callback=callback_set_dt_gamma)
# max_steps slider
def callback_set_max_steps(sender, app_data):
self.opt.max_steps = app_data
self.need_update = True
dpg.add_slider_int(label="max steps", min_value=1, max_value=1024, format="%d", default_value=self.opt.max_steps, callback=callback_set_max_steps)
# aabb slider
def callback_set_aabb(sender, app_data, user_data):
# user_data is the dimension for aabb (xmin, ymin, zmin, xmax, ymax, zmax)
self.trainer.model.aabb_infer[user_data] = app_data
# also change train aabb ? [better not...]
#self.trainer.model.aabb_train[user_data] = app_data
self.need_update = True
dpg.add_separator()
dpg.add_text("Axis-aligned bounding box:")
with dpg.group(horizontal=True):
dpg.add_slider_float(label="x", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=0)
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=3)
with dpg.group(horizontal=True):
dpg.add_slider_float(label="y", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=1)
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=4)
with dpg.group(horizontal=True):
dpg.add_slider_float(label="z", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=2)
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=5)
# debug info
if self.debug:
with dpg.collapsing_header(label="Debug"):
# pose
dpg.add_separator()
dpg.add_text("Camera Pose:")
dpg.add_text(str(self.cam.pose), tag="_log_pose")
### register camera handler
def callback_camera_drag_rotate(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.orbit(dx, dy)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
def callback_camera_wheel_scale(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
delta = app_data
self.cam.scale(delta)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
def callback_camera_drag_pan(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.pan(dx, dy)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
with dpg.handler_registry():
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Left, callback=callback_camera_drag_rotate)
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan)
dpg.create_viewport(title='torch-ngp', width=self.W, height=self.H, resizable=False)
# TODO: seems dearpygui doesn't support resizing texture...
# def callback_resize(sender, app_data):
# self.W = app_data[0]
# self.H = app_data[1]
# # how to reload texture ???
# dpg.set_viewport_resize_callback(callback_resize)
### global theme
with dpg.theme() as theme_no_padding:
with dpg.theme_component(dpg.mvAll):
# set all padding to 0 to avoid scroll bar
dpg.add_theme_style(dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.add_theme_style(dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.bind_item_theme("_primary_window", theme_no_padding)
dpg.setup_dearpygui()
#dpg.show_metrics()
dpg.show_viewport()
def render(self):
while dpg.is_dearpygui_running():
# update texture every frame
if self.training:
self.train_step()
self.test_step()
dpg.render_dearpygui_frame()