forked from FeatureBaseDB/featurebase
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapply.go
577 lines (527 loc) · 15.9 KB
/
apply.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// Copyright 2021 Molecula Corp. All rights reserved.
package pilosa
import (
"context"
"fmt"
"io"
"os"
"path/filepath"
"strings"
"sync"
"github.com/apache/arrow/go/v10/arrow"
"github.com/apache/arrow/go/v10/arrow/array"
"github.com/apache/arrow/go/v10/arrow/memory"
"github.com/gomem/gomem/pkg/dataframe"
"github.com/featurebasedb/featurebase/v3/pql"
"github.com/featurebasedb/featurebase/v3/tracing"
"github.com/featurebasedb/featurebase/v3/vprint"
"github.com/pkg/errors"
ivy "robpike.io/ivy/arrow"
config "robpike.io/ivy/config"
"robpike.io/ivy/exec"
"robpike.io/ivy/parse"
"robpike.io/ivy/run"
"robpike.io/ivy/scan"
"robpike.io/ivy/value"
)
type (
ApplyResult *arrow.Column
)
func runIvyString(context value.Context, str string) (ok bool, err error) {
defer func() {
if r := recover(); r != nil {
err = r.(value.Error)
}
}()
scanner := scan.New(context, "<args>", strings.NewReader(str))
parser := parse.NewParser("<args>", scanner, context)
ok = run.Run(parser, context, false)
return
}
// Possibly combine all arrays together then apply some interesting
// computation at the end?
func IvyReduce(reduceCode string, opCode string, opt *ExecOptions) (func(ctx context.Context, prev, v interface{}) interface{}, func() (*dataframe.DataFrame, error)) {
var accumulator value.Value
mu := &sync.Mutex{}
concat := value.BinaryOps[opCode]
conf := getDefaultConfig()
ctxIvy := exec.NewContext(&conf)
// concat returned results at coordinating node.
reduceFn := func(ctx context.Context, prev, v interface{}) interface{} {
if v == nil {
return prev
}
if accumulator == nil {
switch val := v.(type) {
case *dataframe.DataFrame:
col := val.ColumnAt(0)
resolver := dataframe.NewChunkResolver(col)
accumulator = value.NewArrowVector(col, &conf, &resolver)
case value.Value:
accumulator = v.(value.Value)
default:
return errors.New(fmt.Sprintf("ivy reduction failed first unexpected type %T", v))
}
return nil
}
switch val := v.(type) {
case *dataframe.DataFrame:
col := val.ColumnAt(0)
resolver := dataframe.NewChunkResolver(col)
x := value.NewArrowVector(col, &conf, &resolver)
mu.Lock() // i'm being overyerly cautious..need to confirm this can be concurrent
accumulator = concat.EvalBinary(ctxIvy, accumulator, x)
mu.Unlock()
case value.Value:
mu.Lock()
accumulator = concat.EvalBinary(ctxIvy, accumulator, val)
mu.Unlock()
default:
return errors.New(fmt.Sprintf("ivy reduction failed unexpected type %T", v))
}
return nil
}
tablerFn := func() (*dataframe.DataFrame, error) {
pool := memory.NewGoAllocator() // TODO(twg) 2022/09/01 singledton?
if opt.Remote {
col := value.ToArrowColumn(accumulator, pool)
return dataframe.NewDataFrameFromColumns(pool, []arrow.Column{*col})
}
// only acutally reduce on the initiating node i hate the network
// over head but oh well
ctxIvy.AssignGlobal("_", accumulator)
ok, err := runIvyString(ctxIvy, reduceCode)
if err != nil {
return nil, err
}
if ok {
v := ctxIvy.Global("_")
if v == nil {
return nil, errors.New("ivy reduction no result ")
}
col := value.ToArrowColumn(ctxIvy.Global("_"), pool)
return dataframe.NewDataFrameFromColumns(pool, []arrow.Column{*col})
}
return nil, errors.New("ivy reduction failed ")
}
return reduceFn, tablerFn
}
// executeApply executes a Apply() call.
func (e *executor) executeApply(ctx context.Context, qcx *Qcx, index string, c *pql.Call, shards []uint64, opt *ExecOptions) (*dataframe.DataFrame, error) {
if !e.dataframeEnabled {
return nil, errors.New("Dataframe support not enabled")
}
span, ctx := tracing.StartSpanFromContext(ctx, "Executor.executeMax")
defer span.Finish()
if _, err := c.FirstStringArg("_ivy"); err != nil {
return nil, errors.Wrap(err, " no ivy program supplied")
}
if len(c.Children) > 1 {
return nil, errors.New("Apply() only accepts a single bitmap input filter")
}
// Execute calls in bulk on each remote node and merge.
mapFn := func(ctx context.Context, shard uint64, mopt *mapOptions) (_ interface{}, err error) {
return e.executeApplyShard(ctx, qcx, index, c, shard)
}
ivyReduce, ok, err := c.StringArg("_ivyReduce")
if err != nil {
return nil, err
}
reduceFn, tablerFn := IvyReduce("_", ",", opt)
if ok {
reduceFn, tablerFn = IvyReduce(ivyReduce, ",", opt)
}
_, err = e.mapReduce(ctx, index, shards, c, opt, mapFn, reduceFn)
if err != nil {
return nil, err
}
return tablerFn()
}
func getDefaultConfig() config.Config {
maxbits := uint(1e9) // "maximum size of an integer, in bits; 0 means no limit")
maxdigits := uint(1e4) // "above this many `digits`, integers print as floating point; 0 disables")
maxstack := uint(100000)
origin := 1 // "set index origin to `n` (must be 0 or 1)")
prompt := "" // flag.String("prompt", "", "command `prompt`")
format := ""
// debugFlag := "" // flag.String("debug", "", "comma-separated `names` of debug settings to enable")
conf := config.Config{}
conf.SetFormat(format)
conf.SetMaxBits(maxbits)
conf.SetMaxDigits(maxdigits)
conf.SetMaxStack(maxstack)
conf.SetOrigin(origin)
conf.SetPrompt(prompt)
conf.SetOutput(io.Discard)
conf.SetErrOutput(io.Discard)
conf.SetEmbedded(true) // needed to propagate panic
return conf
}
func filterDataframe(resolver dataframe.Resolver, pool memory.Allocator, filter []int64) (*dataframe.IndexResolver, error) {
if resolver.NumRows() == 0 {
return nil, errors.New("No data")
}
indexResolver := dataframe.NewIndexResolver(len(filter), uint32(ShardWidth-1))
for i, id := range filter {
if int(id) >= resolver.NumRows() {
continue
}
c, o := resolver.Resolve(int(id))
indexResolver.Set(i, c, o)
}
return indexResolver, nil
}
func (e *executor) executeApplyShard(ctx context.Context, qcx *Qcx, index string, c *pql.Call, shard uint64) (value.Value, error) {
span, _ := tracing.StartSpanFromContext(ctx, "Executor.executeApplyShard")
defer span.Finish()
ivyProgram, ok, err := c.StringArg("_ivy")
if err != nil || !ok {
return nil, errors.Wrap(err, "finding ivy program")
}
var filter *Row
if len(c.Children) == 1 {
row, err := e.executeBitmapCallShard(ctx, qcx, index, c.Children[0], shard)
if err != nil {
return nil, err
}
filter = row
if !filter.Any() {
// no need to actuall run the query for its not operating against any values
return value.NewVector([]value.Value{}), nil
}
}
//
pool := memory.NewGoAllocator() // TODO(twg) 2022/09/01 singledton?
ids := filter.ShardColumns() // needs to be shard columns
// Fetch index.
idx := e.Holder.Index(index)
if idx == nil {
return nil, newNotFoundError(ErrIndexNotFound, index)
}
fname := idx.GetDataFramePath(shard)
if !e.dataFrameExists(fname) {
return value.NewVector([]value.Value{}), nil
}
table, err := e.getDataTable(ctx, fname, pool)
if err != nil {
return nil, err
}
defer table.Release()
df, err := dataframe.NewDataFrameFromTable(pool, table)
if err != nil {
return nil, err
}
p := dataframe.NewChunkResolver(df.ColumnAt(0))
var resolver dataframe.Resolver
resolver = &p
if filter != nil {
if len(ids) == 0 {
return value.NewVector([]value.Value{}), nil
}
resolver, err = filterDataframe(resolver, pool, ids)
if err != nil {
return nil, err
}
}
conf := getDefaultConfig()
context, err := ivy.RunArrow(dataframe.NewTableFacade(df), ivyProgram, conf, resolver)
if err != nil {
return nil, fmt.Errorf("ivy map error: %w", err)
}
return context.Global("_"), nil
}
// ///////////////////////////////////////////////////////
// all the ingest supporting functions
// ///////////////////////////////////////////////////////
func NewShardFile(ctx context.Context, name string, mem memory.Allocator, e *executor) (*ShardFile, error) {
if !e.dataFrameExists(name) {
return &ShardFile{dest: name, executor: e}, nil
}
// else read in existing
table, err := e.getDataTable(ctx, name, mem)
if err != nil {
return nil, err
}
return &ShardFile{table: table, schema: table.Schema(), dest: name, executor: e}, nil
}
type NameType struct {
Name string
DataType arrow.DataType
}
type ChangesetRequest struct {
ShardIds []int64 // only shardwidth bits to provide 0 indexing inside shard file
Columns []interface{}
SimpleSchema []NameType
}
// TODO(twg) 2022/09/30 Needs a refactor
func cast(v interface{}) arrow.DataType {
switch v.(type) {
case *arrow.Int64Type:
return arrow.PrimitiveTypes.Int64
case int64:
return arrow.PrimitiveTypes.Int64
case *arrow.Float64Type:
return arrow.PrimitiveTypes.Float64
case float64:
return arrow.PrimitiveTypes.Float64
default:
vprint.VV("%T .... %v", v, v)
}
return arrow.PrimitiveTypes.Int64
}
func (cr *ChangesetRequest) ArrowSchema() *arrow.Schema {
fields := make([]arrow.Field, len(cr.SimpleSchema))
for i := range cr.SimpleSchema {
fields[i] = arrow.Field{Name: cr.SimpleSchema[i].Name, Type: cast(cr.SimpleSchema[i].DataType)}
}
return arrow.NewSchema(fields, nil)
}
type ShardFile struct {
table arrow.Table
schema *arrow.Schema
beforeRows int64
added int64
columns []interface{}
dest string
executor *executor
}
func compareSchema(s1, s2 *arrow.Schema) bool {
if s1 == nil || s2 == nil {
return false
}
if len(s1.Fields()) != len(s2.Fields()) {
return false
}
for i := 0; i < len(s1.Fields()); i++ {
f1 := s1.Field(i)
f2 := s2.Field(i)
if f1.Name != f2.Name {
return false
}
if f1.Type != f2.Type {
return false
}
}
return true
}
func (sf *ShardFile) EnsureSchema(cs *ChangesetRequest) error {
schema := cs.ArrowSchema()
if sf.schema == nil {
sf.schema = schema
} else {
if !compareSchema(sf.schema, schema) {
vprint.VV("incomeing schema", schema)
vprint.VV("existing schema", sf.schema)
return errors.New("dataframe schema's don't match")
}
}
sf.columns = make([]interface{}, len(sf.schema.Fields()))
return nil
}
func (sf *ShardFile) buildAppenders(maxid int64) {
if sf.table != nil {
sf.beforeRows = sf.table.NumRows()
}
if maxid < sf.beforeRows {
// no need to add new rows
return
}
newSize := maxid - sf.beforeRows + 1
for i := 0; i < len(sf.schema.Fields()); i++ {
switch sf.schema.Field(i).Type {
case arrow.PrimitiveTypes.Int64:
sf.columns[i] = make([]int64, newSize)
case arrow.PrimitiveTypes.Float64:
sf.columns[i] = make([]float64, newSize)
}
}
sf.added = newSize
}
// the row offset must be reset to 0 for the slices being appended
func (sf *ShardFile) SetIntValue(col int, row int64, val int64) {
v := sf.columns[col].([]int64)
v[row-sf.beforeRows] = val
}
func (sf *ShardFile) SetFloatValue(col int, row int64, val float64) {
v := sf.columns[col].([]float64)
v[row-sf.beforeRows] = val
}
func (sf *ShardFile) Process(cs *ChangesetRequest) error {
err := sf.process(cs)
if err != nil {
return err
}
rtemp := sf.dest + ".temp"
err = sf.Save(rtemp)
if err != nil {
return err
}
return os.Rename(rtemp+sf.executor.TableExtension(), sf.dest+sf.executor.TableExtension())
}
func (sf *ShardFile) process(cs *ChangesetRequest) error {
offset := 0
if sf.table != nil {
column := sf.table.Column(0)
resolver := dataframe.NewChunkResolver(column)
for i, rowid := range cs.ShardIds {
offset = i
if rowid >= sf.table.NumRows() {
break
}
chunk, l := resolver.Resolve(int(rowid))
for col := 0; col < len(sf.schema.Fields()); col++ {
column := sf.table.Column(col)
switch column.DataType() {
case arrow.PrimitiveTypes.Int64:
v := column.Data().Chunk(chunk).(*array.Int64).Int64Values()
v[l] = cs.Columns[col].([]int64)[i]
case arrow.PrimitiveTypes.Float64:
v := column.Data().Chunk(chunk).(*array.Float64).Float64Values()
v[l] = cs.Columns[col].([]float64)[i]
default:
panic(fmt.Sprintf("Unknown Type %v", column.DataType()))
}
}
}
}
max := cs.ShardIds[len(cs.ShardIds)-1]
sf.buildAppenders(max)
// need to check if only replace and no apend
if sf.added > 0 {
for i, rowid := range cs.ShardIds[offset:] {
i += offset
for col := 0; col < len(sf.schema.Fields()); col++ {
switch sf.schema.Field(col).Type {
case arrow.PrimitiveTypes.Int64:
sf.SetIntValue(col, rowid, cs.Columns[col].([]int64)[i])
case arrow.PrimitiveTypes.Float64:
sf.SetFloatValue(col, rowid, cs.Columns[col].([]float64)[i])
default:
panic(fmt.Sprintf("2 Unknown Type %v", sf.schema.Field(col).Type))
}
}
}
}
return nil
}
func (sf *ShardFile) Save(name string) error {
parts := make([]arrow.Array, 0)
mem := memory.NewGoAllocator()
for col := 0; col < len(sf.schema.Fields()); col++ {
chunks := make([]arrow.Array, 0)
if sf.table != nil {
// we append if there was existing parquet file
column := sf.table.Column(col)
chunks = append(chunks, column.Data().Chunks()...)
}
switch sf.schema.Field(col).Type {
case arrow.PrimitiveTypes.Int64:
// case *arrow.Int64Type:
if sf.added > 0 {
ibuild := array.NewInt64Builder(mem)
ibuild.AppendValues(sf.columns[col].([]int64), nil) // TODO(twg) 2022/09/28 need to handle null
newChunk := ibuild.NewArray()
chunks = append(chunks, newChunk)
}
record, err := array.Concatenate(chunks, mem)
if err != nil {
return err
}
parts = append(parts, record)
case arrow.PrimitiveTypes.Float64:
// case *arrow.Float64Type:
if sf.added > 0 {
fbuild := array.NewFloat64Builder(mem)
fbuild.AppendValues(sf.columns[col].([]float64), nil) // TODO(twg) 2022/09/28 need to handle null
newChunk := fbuild.NewArray()
chunks = append(chunks, newChunk)
}
record, err := array.Concatenate(chunks, mem)
if err != nil {
return err
}
parts = append(parts, record)
default:
vprint.VV("UNKNOWN %T", sf.schema.Field(col).Type)
}
}
rec := array.NewRecord(sf.schema, parts, sf.beforeRows+sf.added)
table := array.NewTableFromRecords(sf.schema, []arrow.Record{rec})
return sf.executor.SaveTable(name, table, mem)
}
// TODO(twg) 2022/10/03 Not a huge fan of the global variable will look at adding to executor structure
// when dataframe is fully integrated
var (
dataframeShardLocks map[uint64]*sync.Mutex
muWriteDataframe sync.Mutex
)
func init() {
dataframeShardLocks = make(map[uint64]*sync.Mutex)
}
func getDataframeWritelock(shard uint64) *sync.Mutex {
muWriteDataframe.Lock()
defer muWriteDataframe.Unlock()
lock, ok := dataframeShardLocks[shard]
if ok {
return lock
}
newLock := sync.Mutex{}
dataframeShardLocks[shard] = &newLock
return &newLock
}
func (api *API) ApplyDataframeChangeset(ctx context.Context, index string, cs *ChangesetRequest, shard uint64) error {
// TODO(twg) 2022/09/29 need to validate api call
idx := api.Holder().Index(index)
// check if dataframe exists
fname := idx.GetDataFramePath(shard)
// only 1 shard writer allowed at at time so wait for it to be available
mu := getDataframeWritelock(shard)
mu.Lock()
defer mu.Unlock()
mem := memory.NewGoAllocator()
shardFile, err := NewShardFile(ctx, fname, mem, api.server.executor)
if err != nil {
return err
}
err = shardFile.EnsureSchema(cs)
if err != nil {
return err
}
return shardFile.Process(cs)
}
type column struct {
Name string
Type string
}
func (api *API) GetDataframeSchema(ctx context.Context, indexName string) (interface{}, error) {
idx, err := api.Index(ctx, indexName)
if err != nil {
return nil, err
}
base := idx.DataframesPath()
dir, _ := os.Open(base)
files, _ := dir.Readdir(0)
parts := make([]column, 0)
mem := memory.NewGoAllocator()
for i := range files {
file := files[i]
name := file.Name()
if api.server.executor.IsDataframeFile(name) {
// strip off the parquet extenison
name = strings.TrimSuffix(name, filepath.Ext(name))
// read the parquet file and extract the schema
fname := filepath.Join(base, name)
table, err := api.server.executor.getDataTable(ctx, fname, mem)
if err != nil {
return nil, err
}
for i := 0; i < int(table.NumCols()); i++ {
col := table.Column(i)
part := column{Name: col.Name(), Type: col.DataType().String()}
parts = append(parts, part)
}
break // only go on first file
}
}
return parts, nil
}