forked from AiuniAI/Unique3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
opt.py
190 lines (157 loc) · 7.69 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# modified from https://github.com/Profactor/continuous-remeshing
import time
import torch
import torch_scatter
from typing import Tuple
from mesh_reconstruction.remesh import calc_edge_length, calc_edges, calc_face_collapses, calc_face_normals, calc_vertex_normals, collapse_edges, flip_edges, pack, prepend_dummies, remove_dummies, split_edges
@torch.no_grad()
def remesh(
vertices_etc:torch.Tensor, #V,D
faces:torch.Tensor, #F,3 long
min_edgelen:torch.Tensor, #V
max_edgelen:torch.Tensor, #V
flip:bool,
max_vertices=1e6
):
# dummies
vertices_etc,faces = prepend_dummies(vertices_etc,faces)
vertices = vertices_etc[:,:3] #V,3
nan_tensor = torch.tensor([torch.nan],device=min_edgelen.device)
min_edgelen = torch.concat((nan_tensor,min_edgelen))
max_edgelen = torch.concat((nan_tensor,max_edgelen))
# collapse
edges,face_to_edge = calc_edges(faces) #E,2 F,3
edge_length = calc_edge_length(vertices,edges) #E
face_normals = calc_face_normals(vertices,faces,normalize=False) #F,3
vertex_normals = calc_vertex_normals(vertices,faces,face_normals) #V,3
face_collapse = calc_face_collapses(vertices,faces,edges,face_to_edge,edge_length,face_normals,vertex_normals,min_edgelen,area_ratio=0.5)
shortness = (1 - edge_length / min_edgelen[edges].mean(dim=-1)).clamp_min_(0) #e[0,1] 0...ok, 1...edgelen=0
priority = face_collapse.float() + shortness
vertices_etc,faces = collapse_edges(vertices_etc,faces,edges,priority)
# split
if vertices.shape[0]<max_vertices:
edges,face_to_edge = calc_edges(faces) #E,2 F,3
vertices = vertices_etc[:,:3] #V,3
edge_length = calc_edge_length(vertices,edges) #E
splits = edge_length > max_edgelen[edges].mean(dim=-1)
vertices_etc,faces = split_edges(vertices_etc,faces,edges,face_to_edge,splits,pack_faces=False)
vertices_etc,faces = pack(vertices_etc,faces)
vertices = vertices_etc[:,:3]
if flip:
edges,_,edge_to_face = calc_edges(faces,with_edge_to_face=True) #E,2 F,3
flip_edges(vertices,faces,edges,edge_to_face,with_border=False)
return remove_dummies(vertices_etc,faces)
def lerp_unbiased(a:torch.Tensor,b:torch.Tensor,weight:float,step:int):
"""lerp with adam's bias correction"""
c_prev = 1-weight**(step-1)
c = 1-weight**step
a_weight = weight*c_prev/c
b_weight = (1-weight)/c
a.mul_(a_weight).add_(b, alpha=b_weight)
class MeshOptimizer:
"""Use this like a pytorch Optimizer, but after calling opt.step(), do vertices,faces = opt.remesh()."""
def __init__(self,
vertices:torch.Tensor, #V,3
faces:torch.Tensor, #F,3
lr=0.3, #learning rate
betas=(0.8,0.8,0), #betas[0:2] are the same as in Adam, betas[2] may be used to time-smooth the relative velocity nu
gammas=(0,0,0), #optional spatial smoothing for m1,m2,nu, values between 0 (no smoothing) and 1 (max. smoothing)
nu_ref=0.3, #reference velocity for edge length controller
edge_len_lims=(.01,.15), #smallest and largest allowed reference edge length
edge_len_tol=.5, #edge length tolerance for split and collapse
gain=.2, #gain value for edge length controller
laplacian_weight=.02, #for laplacian smoothing/regularization
ramp=1, #learning rate ramp, actual ramp width is ramp/(1-betas[0])
grad_lim=10., #gradients are clipped to m1.abs()*grad_lim
remesh_interval=1, #larger intervals are faster but with worse mesh quality
local_edgelen=True, #set to False to use a global scalar reference edge length instead
):
self._vertices = vertices
self._faces = faces
self._lr = lr
self._betas = betas
self._gammas = gammas
self._nu_ref = nu_ref
self._edge_len_lims = edge_len_lims
self._edge_len_tol = edge_len_tol
self._gain = gain
self._laplacian_weight = laplacian_weight
self._ramp = ramp
self._grad_lim = grad_lim
self._remesh_interval = remesh_interval
self._local_edgelen = local_edgelen
self._step = 0
V = self._vertices.shape[0]
# prepare continuous tensor for all vertex-based data
self._vertices_etc = torch.zeros([V,9],device=vertices.device)
self._split_vertices_etc()
self.vertices.copy_(vertices) #initialize vertices
self._vertices.requires_grad_()
self._ref_len.fill_(edge_len_lims[1])
@property
def vertices(self):
return self._vertices
@property
def faces(self):
return self._faces
def _split_vertices_etc(self):
self._vertices = self._vertices_etc[:,:3]
self._m2 = self._vertices_etc[:,3]
self._nu = self._vertices_etc[:,4]
self._m1 = self._vertices_etc[:,5:8]
self._ref_len = self._vertices_etc[:,8]
with_gammas = any(g!=0 for g in self._gammas)
self._smooth = self._vertices_etc[:,:8] if with_gammas else self._vertices_etc[:,:3]
def zero_grad(self):
self._vertices.grad = None
@torch.no_grad()
def step(self):
eps = 1e-8
self._step += 1
# spatial smoothing
edges,_ = calc_edges(self._faces) #E,2
E = edges.shape[0]
edge_smooth = self._smooth[edges] #E,2,S
neighbor_smooth = torch.zeros_like(self._smooth) #V,S
torch_scatter.scatter_mean(src=edge_smooth.flip(dims=[1]).reshape(E*2,-1),index=edges.reshape(E*2,1),dim=0,out=neighbor_smooth)
#apply optional smoothing of m1,m2,nu
if self._gammas[0]:
self._m1.lerp_(neighbor_smooth[:,5:8],self._gammas[0])
if self._gammas[1]:
self._m2.lerp_(neighbor_smooth[:,3],self._gammas[1])
if self._gammas[2]:
self._nu.lerp_(neighbor_smooth[:,4],self._gammas[2])
#add laplace smoothing to gradients
laplace = self._vertices - neighbor_smooth[:,:3]
grad = torch.addcmul(self._vertices.grad, laplace, self._nu[:,None], value=self._laplacian_weight)
#gradient clipping
if self._step>1:
grad_lim = self._m1.abs().mul_(self._grad_lim)
grad.clamp_(min=-grad_lim,max=grad_lim)
# moment updates
lerp_unbiased(self._m1, grad, self._betas[0], self._step)
lerp_unbiased(self._m2, (grad**2).sum(dim=-1), self._betas[1], self._step)
velocity = self._m1 / self._m2[:,None].sqrt().add_(eps) #V,3
speed = velocity.norm(dim=-1) #V
if self._betas[2]:
lerp_unbiased(self._nu,speed,self._betas[2],self._step) #V
else:
self._nu.copy_(speed) #V
# update vertices
ramped_lr = self._lr * min(1,self._step * (1-self._betas[0]) / self._ramp)
self._vertices.add_(velocity * self._ref_len[:,None], alpha=-ramped_lr)
# update target edge length
if self._step % self._remesh_interval == 0:
if self._local_edgelen:
len_change = (1 + (self._nu - self._nu_ref) * self._gain)
else:
len_change = (1 + (self._nu.mean() - self._nu_ref) * self._gain)
self._ref_len *= len_change
self._ref_len.clamp_(*self._edge_len_lims)
def remesh(self, flip:bool=True, poisson=False)->Tuple[torch.Tensor,torch.Tensor]:
min_edge_len = self._ref_len * (1 - self._edge_len_tol)
max_edge_len = self._ref_len * (1 + self._edge_len_tol)
self._vertices_etc,self._faces = remesh(self._vertices_etc,self._faces,min_edge_len,max_edge_len,flip, max_vertices=1e6)
self._split_vertices_etc()
self._vertices.requires_grad_()
return self._vertices, self._faces