-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathquac_metrics.py
623 lines (519 loc) · 22.6 KB
/
quac_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import collections
import logging
import json
import math
import re, string
from collections import defaultdict, Counter
from transformers import BasicTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def single_score(prediction, ground_truth):
if prediction == "CANNOTANSWER" and ground_truth == "CANNOTANSWER":
return 1.0
elif prediction == "CANNOTANSWER" or ground_truth == "CANNOTANSWER":
return 0.0
else:
return f1_score(prediction, ground_truth)
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
"""Project the tokenized prediction back to the original text."""
# When we created the data, we kept track of the alignment between original
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
# now `orig_text` contains the span of our original text corresponding to the
# span that we predicted.
#
# However, `orig_text` may contain extra characters that we don't want in
# our prediction.
#
# For example, let's say:
# pred_text = steve smith
# orig_text = Steve Smith's
#
# We don't want to return `orig_text` because it contains the extra "'s".
#
# We don't want to return `pred_text` because it's already been normalized
#
# What we really want to return is "Steve Smith".
#
# Therefore, we have to apply a semi-complicated alignment heuristic between
# `pred_text` and `orig_text` to get a character-to-character alignment. This
# can fail in certain cases in which case we just return `orig_text`.
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
if verbose_logging:
logger.info("Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
return orig_text
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
if verbose_logging:
logger.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text)
return orig_text
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in tok_ns_to_s_map.items():
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
if verbose_logging:
logger.info("Couldn't map start position")
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
if verbose_logging:
logger.info("Couldn't map end position")
return orig_text
output_text = orig_text[orig_start_position : (orig_end_position + 1)]
return output_text
def read_target_dict(input_file):
target = json.load(open(input_file))['data']
target_dict = {}
for p in target:
for par in p['paragraphs']:
p_id = par['id']
qa_list = par['qas']
for qa in qa_list:
q_idx = qa['id']
val_spans = [anss['text'] for anss in qa['answers']]
target_dict[q_idx] = val_spans
return target_dict
def read_target_dict_exclude_goldCannotAnswer(input_file):
target = json.load(open(input_file))['data']
target_dict = {}
for p in target:
for par in p['paragraphs']:
p_id = par['id']
qa_list = par['qas']
for qa in qa_list:
q_idx = qa['id']
val_spans = [anss['text'] for anss in qa['answers'] if anss['text'] != 'CANNOTANSWER']
if val_spans == []:
continue
# val_spans_ = [anss['text'] for anss in qa['answers']]
# if val_spans != val_spans_:
# import pdb; pdb.set_trace()
target_dict[q_idx] = val_spans
return target_dict
def leave_one_out(refs):
if len(refs) == 1:
return 1.
splits = []
for r in refs:
splits.append(r.split())
t_f1 = 0.0
for i in range(len(refs)):
m_f1 = 0
for j in range(len(refs)):
if i == j:
continue
f1_ij = f1_score(refs[i], refs[j])
if f1_ij > m_f1:
m_f1 = f1_ij
t_f1 += m_f1
return t_f1 / len(refs)
def leave_one_out_max(prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
scores_for_ground_truths.append(single_score(prediction, ground_truth))
if len(scores_for_ground_truths) == 1:
return scores_for_ground_truths[0]
else:
# leave out one ref every time
t_f1 = []
for i in range(len(scores_for_ground_truths)):
t_f1.append(max(scores_for_ground_truths[:i] + scores_for_ground_truths[i+1:]))
return 1.0 * sum(t_f1) / len(t_f1)
def handle_cannot(refs):
num_cannot = 0
num_spans = 0
for ref in refs:
if ref == 'CANNOTANSWER':
num_cannot += 1
else:
num_spans += 1
if num_cannot >= num_spans:
refs = ['CANNOTANSWER']
else:
refs = [x for x in refs if x != 'CANNOTANSWER']
return refs
def _get_best_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs
def compute_predictions_logits(
all_examples,
all_features,
all_results,
n_best_size,
max_answer_length,
do_lower_case,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
output_nbest_with_start_index_file, #TODO
verbose_logging,
null_score_diff_threshold,
tokenizer,
write_predictions=True,
exclude_cannotanswer=False
):
"""Write final predictions to the json file and log-odds of null if needed."""
if output_prediction_file:
logger.info(f"Writing predictions to: {output_prediction_file}")
if output_nbest_file:
logger.info(f"Writing nbest to: {output_nbest_file}")
if output_null_log_odds_file:
logger.info(f"Writing null_log_odds to: {output_null_log_odds_file}")
#TODO
if output_nbest_with_start_index_file:
logger.info(f"Writing nbest with start index to: {output_nbest_with_start_index_file}")
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["feature_index", "start_index", "end_index", "start_logit", "end_logit", "class_logit"]
)
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
#TODO
all_nbest_start_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
if exclude_cannotanswer:
if example_index_to_features[example_index] == []: # we have excluded cannotanswer examples, so example_index may not be same as feature.example_index.
#import pdb; pdb.set_trace()
continue
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
min_null_feature_index = 0 # the paragraph slice with min null score
null_start_logit = 0 # the start logit at the slice with min null score
null_end_logit = 0 # the end logit at the slice with min null score
null_class_logit = None
for (feature_index, feature) in enumerate(features):
result = unique_id_to_result[feature.unique_id]
start_indexes = _get_best_indexes(result.start_logits, n_best_size)
end_indexes = _get_best_indexes(result.end_logits, n_best_size)
# if we could have irrelevant answers, get the min score of irrelevant
feature_null_score = result.start_logits[0] + result.end_logits[0]
if feature_null_score < score_null:
score_null = feature_null_score
min_null_feature_index = feature_index
null_start_logit = result.start_logits[0]
null_end_logit = result.end_logits[0]
null_class_logit = result.cls_logits
for start_index in start_indexes:
for end_index in end_indexes:
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= len(feature.tokens):
continue
if end_index >= len(feature.tokens):
continue
if start_index not in feature.token_to_orig_map:
continue
if end_index not in feature.token_to_orig_map:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index],
class_logit=result.cls_logits
)
)
prelim_predictions.append(
_PrelimPrediction(
feature_index=min_null_feature_index,
start_index=0,
end_index=0,
start_logit=null_start_logit,
end_logit=null_end_logit,
class_logit=null_class_logit
)
)
prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True)
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_logit", "end_logit"]
)
#TODO
_NbestPredictionStart = collections.namedtuple( # pylint: disable=invalid-name
"NbestPredictionStart", ["text", "start_logit", "end_logit", "answer_start"]
)
seen_predictions = {}
nbest = []
#TODO
nbest_start = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
#import pdb; pdb.set_trace()
# try :
# feature = features[pred.feature_index]
# except:
# import pdb; pdb.set_trace()
feature = features[pred.feature_index]
if pred.start_index > 0: # this is a non-null prediction
tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)]
tok_text = tokenizer.convert_tokens_to_string(tok_tokens)
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
#TODO
actual_doc_text = example.context_text#" ".join(example.doc_tokens)
answer_start = actual_doc_text.find(final_text)
#import pdb; pdb.set_trace()
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
else:
final_text = 'CANNOTANSWER'
seen_predictions[final_text] = True
#TODO
actual_doc_text = example.context_text#" ".join(example.doc_tokens)
answer_start = actual_doc_text.find(final_text)
#import pdb; pdb.set_trace()
nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit))
#TODO
nbest_start.append(_NbestPredictionStart(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit,
answer_start=answer_start))
# if we didn't include the empty option in the n-best, include it
if "CANNOTANSWER" not in seen_predictions:
nbest.append(_NbestPrediction(text="CANNOTANSWER", start_logit=null_start_logit, end_logit=null_end_logit))
#TODO
nbest_start.append(_NbestPredictionStart(text="CANNOTANSWER", start_logit=null_start_logit, end_logit=null_end_logit,
answer_start=answer_start))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(_NbestPrediction(text="CANNOTANSWER", start_logit=0.0, end_logit=0.0))
#TODO
nbest_start.append(_NbestPredictionStart(text="CANNOTANSWER", start_logit=0.0, end_logit=0.0,
answer_start=answer_start))
assert len(nbest) >= 1, "No valid predictions"
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
if entry.text != "CANNOTANSWER":
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
#TODO
#output["start_index"] = pred.start_index
nbest_json.append(output)
assert len(nbest_json) >= 1, "No valid predictions"
#TODO
nbest_start_json = []
for (i, entry_start) in enumerate(nbest_start):
output = collections.OrderedDict()
output["text"] = entry_start.text
output["probability"] = probs[i]
output["start_logit"] = entry_start.start_logit
output["end_logit"] = entry_start.end_logit
output["answer_start"] = entry_start.answer_start
nbest_start_json.append(output)
if not best_non_null_entry:
score_diff = 10
else:
# predict "CANNOTANSWER" iff the null score - the score of best non-null > threshold
score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit)
scores_diff_json[example.qas_id] = score_diff
if score_diff > null_score_diff_threshold:
all_predictions[example.qas_id] = "CANNOTANSWER"
else:
all_predictions[example.qas_id] = best_non_null_entry.text
all_nbest_json[example.qas_id] = nbest_json
#TODO
all_nbest_start_json[example.qas_id] = nbest_start_json
if write_predictions:
if output_prediction_file:
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
if output_nbest_file:
with open(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if output_null_log_odds_file:
with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
#TODO
if output_nbest_with_start_index_file:
with open(output_nbest_with_start_index_file, "w") as writer:
writer.write(json.dumps(all_nbest_start_json, indent=4) + "\n")
return all_predictions, all_nbest_json
def write_quac(prediction, nbest_pred, in_file, out_file):
dialog_pred = defaultdict(list)
for qa_id, span in prediction.items():
dialog_id = qa_id.split("_q#")[0]
if len(span) == 0:
span = 'CANNOTANSWER'
dialog_pred[dialog_id].append([qa_id, span])
# for those we don't predict anything
target = json.load(open(in_file))['data']
for p in target:
for par in p['paragraphs']:
dialog_id = par['id']
qa_list = par['qas']
if dialog_id not in dialog_pred:
for qa in qa_list:
qa_id = qa['id']
dialog_pred[dialog_id].append([qa_id, 'CANNOTANSWER'])
# now we predict
with open(out_file, 'w') as fout:
for dialog_id, dialog_span in dialog_pred.items():
output_dict = {'best_span_str': [], 'qid': [], 'yesno':[], 'followup': []}
for qa_id, span in dialog_span:
output_dict['best_span_str'].append(span)
output_dict['qid'].append(qa_id)
output_dict['yesno'].append('y')
output_dict['followup'].append('y')
fout.write(json.dumps(output_dict) + '\n')
def quac_performance(prediction, target_dict):
pred, truth = [], []
for qa_id, span in prediction.items():
dialog_id = qa_id.split("_q#")[0]
if len(span) == 0:
span = 'CANNOTANSWER'
pred.append(span)
truth.append(target_dict[qa_id])
min_F1 = 0.4
clean_pred, clean_truth = [], []
all_f1 = []
for p, t in zip(pred, truth):
clean_t = handle_cannot(t)
# compute human performance
human_F1 = leave_one_out(clean_t)
if human_F1 < min_F1: continue
clean_pred.append(p)
clean_truth.append(clean_t)
all_f1.append(leave_one_out_max(p, clean_t))
cur_f1, best_f1 = sum(all_f1), sum(all_f1)
return 100.0 * best_f1 / len(clean_pred)
def quac_performance_exclude_goldCannotAnswer(prediction, target_dict):
num_goldCannotAnswer = 0
num_total_qas = 0
pred, truth = [], []
for qa_id, span in prediction.items():
num_total_qas = num_total_qas + 1
dialog_id = qa_id.split("_q#")[0]
if len(span) == 0:
span = 'CANNOTANSWER'
if qa_id not in target_dict.keys():
num_goldCannotAnswer = num_goldCannotAnswer + 1
#import pdb; pdb.set_trace()
continue
pred.append(span)
truth.append(target_dict[qa_id])
min_F1 = 0.4
clean_pred, clean_truth = [], []
all_f1 = []
for p, t in zip(pred, truth):
clean_t = handle_cannot(t)
# compute human performance
human_F1 = leave_one_out(clean_t)
if human_F1 < min_F1: continue
clean_pred.append(p)
clean_truth.append(clean_t)
all_f1.append(leave_one_out_max(p, clean_t))
cur_f1, best_f1 = sum(all_f1), sum(all_f1)
return 100.0 * best_f1 / len(clean_pred), num_goldCannotAnswer, num_total_qas