forked from opencv/opencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdigits_adjust.py
executable file
·139 lines (114 loc) · 4.27 KB
/
digits_adjust.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
'''
Digit recognition adjustment.
Grid search is used to find the best parameters for SVM and KNearest classifiers.
SVM adjustment follows the guidelines given in
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Usage:
digits_adjust.py [--model {svm|knearest}]
--model {svm|knearest} - select the classifier (SVM is the default)
'''
# Python 2/3 compatibility
from __future__ import print_function
import sys
PY3 = sys.version_info[0] == 3
if PY3:
xrange = range
import numpy as np
import cv2
from multiprocessing.pool import ThreadPool
from digits import *
def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None):
n = len(samples)
folds = np.array_split(np.arange(n), kfold)
def f(i):
model = model_class(**params)
test_idx = folds[i]
train_idx = list(folds)
train_idx.pop(i)
train_idx = np.hstack(train_idx)
train_samples, train_labels = samples[train_idx], labels[train_idx]
test_samples, test_labels = samples[test_idx], labels[test_idx]
model.train(train_samples, train_labels)
resp = model.predict(test_samples)
score = (resp != test_labels).mean()
print(".", end='')
return score
if pool is None:
scores = list(map(f, xrange(kfold)))
else:
scores = pool.map(f, xrange(kfold))
return np.mean(scores)
class App(object):
def __init__(self):
self._samples, self._labels = self.preprocess()
def preprocess(self):
digits, labels = load_digits(DIGITS_FN)
shuffle = np.random.permutation(len(digits))
digits, labels = digits[shuffle], labels[shuffle]
digits2 = list(map(deskew, digits))
samples = preprocess_hog(digits2)
return samples, labels
def get_dataset(self):
return self._samples, self._labels
def run_jobs(self, f, jobs):
pool = ThreadPool(processes=cv2.getNumberOfCPUs())
ires = pool.imap_unordered(f, jobs)
return ires
def adjust_SVM(self):
Cs = np.logspace(0, 10, 15, base=2)
gammas = np.logspace(-7, 4, 15, base=2)
scores = np.zeros((len(Cs), len(gammas)))
scores[:] = np.nan
print('adjusting SVM (may take a long time) ...')
def f(job):
i, j = job
samples, labels = self.get_dataset()
params = dict(C = Cs[i], gamma=gammas[j])
score = cross_validate(SVM, params, samples, labels)
return i, j, score
ires = self.run_jobs(f, np.ndindex(*scores.shape))
for count, (i, j, score) in enumerate(ires):
scores[i, j] = score
print('%d / %d (best error: %.2f %%, last: %.2f %%)' %
(count+1, scores.size, np.nanmin(scores)*100, score*100))
print(scores)
print('writing score table to "svm_scores.npz"')
np.savez('svm_scores.npz', scores=scores, Cs=Cs, gammas=gammas)
i, j = np.unravel_index(scores.argmin(), scores.shape)
best_params = dict(C = Cs[i], gamma=gammas[j])
print('best params:', best_params)
print('best error: %.2f %%' % (scores.min()*100))
return best_params
def adjust_KNearest(self):
print('adjusting KNearest ...')
def f(k):
samples, labels = self.get_dataset()
err = cross_validate(KNearest, dict(k=k), samples, labels)
return k, err
best_err, best_k = np.inf, -1
for k, err in self.run_jobs(f, xrange(1, 9)):
if err < best_err:
best_err, best_k = err, k
print('k = %d, error: %.2f %%' % (k, err*100))
best_params = dict(k=best_k)
print('best params:', best_params, 'err: %.2f' % (best_err*100))
return best_params
if __name__ == '__main__':
import getopt
import sys
print(__doc__)
args, _ = getopt.getopt(sys.argv[1:], '', ['model='])
args = dict(args)
args.setdefault('--model', 'svm')
args.setdefault('--env', '')
if args['--model'] not in ['svm', 'knearest']:
print('unknown model "%s"' % args['--model'])
sys.exit(1)
t = clock()
app = App()
if args['--model'] == 'knearest':
app.adjust_KNearest()
else:
app.adjust_SVM()
print('work time: %f s' % (clock() - t))