forked from soulmachine/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapGraph.tex
123 lines (104 loc) · 3.63 KB
/
chapGraph.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
\chapter{图}
无向图的节点定义如下:
\begin{Code}
// 无向图的节点
struct UndirectedGraphNode {
int label;
vector<UndirectedGraphNode *> neighbors;
UndirectedGraphNode(int x) : label(x) {};
};
\end{Code}
\section{Clone Graph} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:clone-graph}
\subsubsection{描述}
Clone an undirected graph. Each node in the graph contains a \code{label} and a list of its \code{neighbours}.
OJ's undirected graph serialization:
Nodes are labeled uniquely.
We use \code{\#} as a separator for each node, and \code{,} as a separator for node label and each neighbour of the node.
As an example, consider the serialized graph \code{\{0,1,2\#1,2\#2,2\}}.
The graph has a total of three nodes, and therefore contains three parts as separated by \code{\#}.
\begin{enumerate}
\item First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
\item Second node is labeled as 1. Connect node 1 to node 2.
\item Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.
\end{enumerate}
Visually, the graph looks like the following:
\begin{Code}
1
/ \
/ \
0 --- 2
/ \
\_/
\end{Code}
\subsubsection{分析}
广度优先遍历或深度优先遍历都可以。
\subsubsection{DFS}
\begin{Code}
// LeetCode, Clone Graph
// DFS,时间复杂度O(n),空间复杂度O(n)
class Solution {
public:
UndirectedGraphNode *cloneGraph(const UndirectedGraphNode *node) {
if(node == nullptr) return nullptr;
// key is original node,value is copied node
unordered_map<const UndirectedGraphNode *,
UndirectedGraphNode *> copied;
clone(node, copied);
return copied[node];
}
private:
// DFS
static UndirectedGraphNode* clone(const UndirectedGraphNode *node,
unordered_map<const UndirectedGraphNode *,
UndirectedGraphNode *> &copied) {
// a copy already exists
if (copied.find(node) != copied.end()) return copied[node];
UndirectedGraphNode *new_node = new UndirectedGraphNode(node->label);
copied[node] = new_node;
for (auto nbr : node->neighbors)
new_node->neighbors.push_back(clone(nbr, copied));
return new_node;
}
};
\end{Code}
\subsubsection{BFS}
\begin{Code}
// LeetCode, Clone Graph
// BFS,时间复杂度O(n),空间复杂度O(n)
class Solution {
public:
UndirectedGraphNode *cloneGraph(const UndirectedGraphNode *node) {
if (node == nullptr) return nullptr;
// key is original node,value is copied node
unordered_map<const UndirectedGraphNode *,
UndirectedGraphNode *> copied;
// each node in queue is already copied itself
// but neighbors are not copied yet
queue<const UndirectedGraphNode *> q;
q.push(node);
copied[node] = new UndirectedGraphNode(node->label);
while (!q.empty()) {
const UndirectedGraphNode *cur = q.front();
q.pop();
for (auto nbr : cur->neighbors) {
// a copy already exists
if (copied.find(nbr) != copied.end()) {
copied[cur]->neighbors.push_back(copied[nbr]);
} else {
UndirectedGraphNode *new_node =
new UndirectedGraphNode(nbr->label);
copied[nbr] = new_node;
copied[cur]->neighbors.push_back(new_node);
q.push(nbr);
}
}
}
return copied[node];
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item 无
\myenddot