-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfuncs.py
742 lines (550 loc) · 22.2 KB
/
funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
"""
Created by: 6/1/17
On:jesseclark
"""
import pandas as pd
import numpy as np
from itertools import combinations
import argparse
import logging
import copy
logging.info('Starting logger for...')
LOGGER = logging.getLogger(__name__)
LOGGER.setLevel(logging.DEBUG)
def invert_dict(dict_in, append_list=False):
"""
Invert the key:values of a dict
:param dict_in: dict to invert
:param append_list: append to a list? (for non-uniqueness)
:return: inverted dict
"""
if not append_list:
return {val:key for key,val in dict_in.items()}
else:
dict_out = {val:[] for key,val in dict_in.items()}
for key, val in dict_in.items():
dict_out[val].append(key)
return dict_out
def load_data(fname='SeatTest_New.xlsx'):
"""
Load the xlsx using pandas.
:param fname: string location of the file to load
:return: pandas object
"""
return pd.ExcelFile(fname)
def get_names_teams_cur_seats(file_in, names='names'):
"""
Process the xlsx sheet, extracting the names and seats
:param file_in: pandas object for the file, use load_data(fname)
:param names: the name of the tab that contains the names
:return: list of names, names:seats dict, names:teams dict
"""
# load the names portion of the sheet
names_df = file_in.parse(names)
# rename if nec
if 'Full Name' in names_df.columns:
names_df = names_df.rename(columns={'Full Name':'Names'})
if 'Seat' in names_df.columns:
names_df = names_df.rename(columns={'Seat':'current seat'})
if 'Team' in names_df.columns:
names_df = names_df.rename(columns={'Team':'Teams'})
# we sort here to set an order for constructing the X and dij
names = sorted(names_df.Names.values.tolist())
# make the init names_Seats_dict
names_seats_dict = {row[1]['Names']: row[1]['current seat'] for row in
names_df[['Names', 'current seat']].reset_index(drop=True).iterrows()}
# get the names-teams dict
names_teams_dict = {row[1]['Names']: str(row[1]['Teams']) for row in
names_df[['Names', 'Teams']].reset_index(drop=True).iterrows()}
return names, names_seats_dict, names_teams_dict
def create_seating_graph(seats_arr, excludes=('nan',0), inc_self=True):
"""
Create the graph of seats from the layout.
:param seats_arr: np array of physical seating arrangement
:param excludes: ignore entries in seats_arr that take these values (i.e. use 0 or nan for aisles)
:param inc_self: include the seat number as a neighbiour to itself?
:return: seats graph as a dict
"""
# which chairs are neighbours
ni, nj = seats_arr.shape
seats_graph = {}
# loop through each seat
for indi in range(ni):
for indj in range(nj):
# get current seat
seat = seats_arr[indi, indj]
if seat not in excludes:
# now get the neighbours of the seat
# here we consider the diagonals to be a neighbour
ii = np.array([-1, 0, 1]) + indi
jj = np.array([-1, 0, 1]) + indj
# keep the indices within the bounds
ii = ii[(ii >= 0) & (ii < ni)]
jj = jj[(jj >= 0) & (jj < nj)]
# loop through the indices
inds = [(i, j) for i in ii for j in jj]
neighbours = [seats_arr[ind] for ind in inds if seats_arr[ind] not in [seat]+list(excludes)]
if inc_self:
neighbours.append(seat)
seats_graph[seat] = neighbours
return seats_graph
def get_seat_locations(file_in, seats='seat_map', more_connected=True):
"""
Process the seat locations portion of the xlsx sheet
:param file_in: pandas object for the file, use load_data(fname)
:param seats: name of the tab that contains the sheets
:param more_connected: bool, remove aisles from seats when constructing connection graph?
:return: list of seats, dict of seat locations (tuples), graph of seat connections,
dict of seat-seat distances, numpy array of seat map
"""
# get seat locations from map and also all available seats (not just those occupied)
seat_map_df = file_in.parse(seats, header=None)
seats_arr = np.nan_to_num(np.array(seat_map_df, dtype=float)).astype(int)
seats = sorted(list(seats_arr[np.where(seats_arr.astype(float) != 0)]))
# a dict of the seat number and location
seat_locations = {seat: (np.where(seats_arr == seat)[0][0], np.where(seats_arr == seat)[1][0]) for seat in seats}
# we can make the seats have more neighbours by removing the aisles
if more_connected:
_seats_arr = seats_arr[np.where(seats_arr.sum(1) != 0), :].squeeze()
_seats_arr = _seats_arr[:, np.where(_seats_arr.sum(0) != 0)].squeeze()
else:
_seats_arr = seats_arr
seats_graph = create_seating_graph(_seats_arr, inc_self=False)
# we want the distance from each seat to every other seat
seat_distances = {}
for seat1 in seats:
distances = {}
for seat2 in seats:
p1 = np.array(seat_locations[seat1])
p2 = np.array(seat_locations[seat2])
distances[seat2] = abs(p1 - p2).sum()
seat_distances[seat1] = distances
return seats, seat_locations, seats_graph, seat_distances, seats_arr
def get_person_person_distance(names_seats_dict, seat_distances, names):
"""
get person to person distances
used for getting the cost of how far people have moved from each other
can get names_seats_dict = X_to_names_seats_dict(X, names, seats)
:param names_seats_dict: names:seats dict
:param seat_distances: dict of seat-seat distances, indexed by seat name
:param names: list of names
:return: numpy array of person-person distances
"""
pij = np.zeros((len(names), len(names)))
# loop through people and seats
# use the sorted names list, this dictates the ordering for the matrix
for ind1, name1 in enumerate(names):
# get seat
seat1 = names_seats_dict[name1]
# get distances to all other people
for ind2, name2 in enumerate(names):
seat2 = names_seats_dict[name2]
pij[ind1, ind2] = seat_distances[seat1][seat2]
return pij
def calc_dij(names, seats, seat_distances, names_seats_dict):
"""
calc the person-seat distances.
:param names: list of names
:param seats: list of seats
:param seat_distances: dict of seat-seat distances
:param names_seats_dict: names:seats dict of current arrangement
:return: numpy array of person-seat distances
"""
# calc the dij matrix - ordered! 0 important
dij = np.zeros((len(names), len(seats)))
for ind1, name in enumerate(names):
# get cur seat for name
cur_seat = names_seats_dict[name]
# get the distance to all other seats
dists = [seat_distances[cur_seat][ind] for ind in seats]
dij[ind1, :] = dists
return dij
def names_seats_dict_to_X(names_seats_dict, names=None, seats=None):
"""
Convert the dictionary of names:seats into allocation matrix Xij
:param names_seats_dict: names:seats dict
:param names: list of names, ordering dictates ordering of X, if none provided, defaults to sorted keys
:param seats: list of seats
:return: numpy array allocating person i to seat j Xij
"""
if names is None:
names = sorted(names_seats_dict.keys())
if seats is None:
seats = sorted(names_seats_dict.values())
X = np.zeros((len(names), len(seats)))
for ind1, name in enumerate(names):
# get the index of the name in seat
ind2 = seats.index(names_seats_dict[name])
X[ind1, ind2] = 1
return X
def X_to_names_seats_dict(X, names, seats):
"""
Inverse operation of names_seats_dict_to_X, create a names:seats dict from numpy allocation array Xij
:param X: numpy array allocating person i to seat j Xij
:param names: list of names, required for keys
:param seats: list of seats
:return: names:seats dict for current allocation
"""
# use normal dict so we still get key errors
names_seats_dict = {}
for ind1, name in enumerate(names):
cur_seat_ind = np.where(X[ind1, :] == 1)[0][0]
cur_seat = seats[cur_seat_ind]
names_seats_dict[name] = cur_seat
return names_seats_dict
def cost_distance(X, normalize=True, eps=.10, pen_same_seat=True):
"""
Cost function for maximising distance from current position
:param X: Data object
:param normalize: normalize by the number of people?
:param eps: project onto box of height eps (avoid / 0)
:param pen_same_seat: bool, only penalize same seat (rather than adding to all)
:return: scalar cost of current config
"""
Xdij = X.X*X.dij
# add additional penalty for same seat
def add_eps(Xdij):
Xdij[np.where(Xdij == 0)] = eps
return Xdij
# project onto box
if pen_same_seat:
Xdij = add_eps(Xdij)
eps = 0
if normalize:
return 1./(eps+(Xdij).sum()/X.X.sum())
return 1./(eps+(Xdij).sum())
def cost_same_team_by_distance(X, normalize=True, team_normalize=True, p=1.):
"""
cost of current config pertaining to team-member by distance
:param X: Data object of current config
:param normalize: normalize by number of teams
:param team_normalize: normalize by number of people in a team
:param p: power scaling of distance term (u in blog post)
:return: scalar of the cost for this config
"""
allocated_seats = X.names_seats_dict
team_names = X.team_names
cost_team = 0
for team in team_names:
cost_subteam = 0
# now get all combinations of pairs
team_combs = list(combinations(X.teams_names_dict[team], 2))
for name1,name2 in team_combs:
# get occupied seats for team members
seat1 = allocated_seats[name1]
seat2 = allocated_seats[name2]
dist = (X.seat_distances[seat1][seat2])**p
cost_subteam += dist
# normalize by team size
cc = 1.0
if team_normalize:
cc = 1.0*len(team_combs)
if cc != 0:
inc_cost = X.team_weights[team] / (cost_subteam / cc)
else:
inc_cost = 0
cost_team += inc_cost
fact = 1.0
if normalize:
fact = 1.0 / len(team_names)
return cost_team * fact
def cost_previous_neighbour_by_distance(X, normalize=True, p=1.0, eps=.5):
"""
cost of current config for neighbours by distance
:param X: Data object
:param normalize: take average or sum?
:param p: power scaling
:param eps: softening param
:return: cost scaler
"""
pij_current = X.pij
pij_orig = X.pij_orig
if normalize:
return 1. / (eps + (np.abs(pij_current - pij_orig) ** p).mean())
return 1. / (eps + (np.abs(pij_current - pij_orig) ** p).sum())
def generate_random_assignment(names, seats):
# generate a new random arrangement by shuffling seats
return {name:new_seat for name,new_seat in zip(names,list(np.random.choice(seats, size=len(names), replace=False)))}
def get_cost_weights(X, n_trials=1000):
"""
Get the relative weights for the cost terms based on their values for random arrangements.
:param X: Data object
:param n_trials: the number of random configurations to generate for scaling calculation.
:return: list of cost weights
"""
names = X.names
seats = X.seats
c1,c2,c3 = [],[],[]
rand_X = X.copy()
# def get_average_cost_random(ntrials=100, seats, names):
for ind in range(n_trials):
# make a new random arrangement
new_names_seats_dict = generate_random_assignment(names, seats)
# get the new X
_rand_X = names_seats_dict_to_X(new_names_seats_dict, names, seats)
# copy and update to random
rand_X.update(_rand_X)
# max this - hence -ve sign
_c1 = cost_distance(rand_X)
# min this
_c2 = cost_same_team_by_distance(rand_X)
# max this, hence -ve sign
# pij_current = get_person_person_distance(new_names_seats_dict, seat_distances, names)
_c3 = cost_previous_neighbour_by_distance(rand_X)
c1.append(_c1)
c2.append(_c2)
c3.append(_c3)
lambda_1 = np.mean(c1)
lambda_2 = np.mean(c2)
lambda_3 = np.mean(c3)
lambdas = [lambda_1, lambda_2, lambda_3]
tot_lambda = sum(abs(lam) for lam in lambdas)
cost_weights = [1. / (lam / tot_lambda) for lam in lambdas]
return tuple([cost / sum(cost_weights) for cost in cost_weights])
def cost_total(X, cost_weights=(1.0, 1.0, 1.0)):
"""
cost of the three terms, weighted by cost_weights
:param X: Data object
:param cost_weights: tuple (list) of weights
:return: scaler
"""
return cost_weights[0] * cost_distance(X) + \
cost_weights[1] * cost_same_team_by_distance(X) + \
cost_weights[2] * cost_previous_neighbour_by_distance(X, normalize=True)
def fill_empty_seats(seats_names_dict, seats):
"""
Fill empty seats with names 'empty'
:param seats_names_dict: seats:names dict
:param seats: list of seats that should be in the dict
:return: seats:names dict
"""
for seat in seats:
if seat not in seats_names_dict:
seats_names_dict[seat] = 'empty'
return seats_names_dict
def swap_neighbour(X, p1=None, p2=None):
"""
Swap two seats for a config
:param X: Data object
:param p1: position 1, if None, randomly chosen
:param p2: position 2, if None, randomly chosen from neighbours of p1
:return: Data object with updated allocation
"""
# get current seating
allocated_seats = X.names_seats_dict
allocated_seats_inv = fill_empty_seats(invert_dict(allocated_seats), X.seats)
# get which one to swap
if p1 is None:
p1 = np.random.choice(X.seats, 1, replace=True)[0]
# choose randomly from its neighbours
if p2 is None:
p2 = np.random.choice(X.seats_graph[p1], 1, replace=True)[0]
# swap
allocated_seats_inv[p1], allocated_seats_inv[p2] = allocated_seats_inv[p2], allocated_seats_inv[p1]
return names_seats_dict_to_X(invert_dict(allocated_seats_inv), names=X.names, seats=X.seats)
def local_optimize(X, nrounds=1, cost_weights=(1.,1.,1.), use_all=True, use_subset=False):
"""
Do local optimization by switching to neighbouring states and accept any change that improves cost
:param X: Data object
:param nrounds: how many times to cycle
:param cost_weights: weighting for cost terms
:param use_all: consider everyone a neighbour?
:param use_subset: if use_all, randomly sample a sub-portion?
:return: Data object, old cost, new cost, intermediate states
"""
old_cost = cost_total(X, cost_weights=cost_weights)
orig_cost = old_cost
configs = [X.names_seats_dict.copy()]
# loop through number of rounds
for ind1 in range(nrounds):
# loop through randomly
for ind in np.random.choice(range(len(X.seats)), len(X.seats), replace=True):
# print(old_cost)
# get a candidate
if not use_all:
neighbours_to_check = np.random.choice(X.seats_graph[X.seats[ind]],len(X.seats_graph[X.seats[ind]]), False)
else:
if use_subset:
neighbours_to_check = [st for st in X.seats if np.random.rand() > .5]
else:
neighbours_to_check = X.seats
for ind_n in neighbours_to_check:
X_new = X.copy()
X_new.update(swap_neighbour(X_new, p1=X.seats[ind], p2=ind_n))
new_cost = cost_total(X_new, cost_weights=cost_weights)
# accept if better
if new_cost < old_cost:
old_cost = new_cost
configs.append(X.names_seats_dict)
X = X_new.copy()
return X, orig_cost, old_cost, configs
def current_temperature(iter_no, s_amp, s_cent, s_width, trig=False):
# temp for annealing schedule
if not trig:
return float(s_amp) / (1.0 + np.exp(1.0*(iter_no - s_cent) / float(s_width)))
else:
return s_amp*(np.sin((iter_no+s_cent)*2*np.pi/float(s_width))+1.0)
def accept_new_candidate(old_cost, new_cost, T, verbose=True):
"""
Accept a new candidate?
:param old_cost: old cost value
:param new_cost: new cost value
:param T: temp param
:param verbose: print stuff
:return: bool for acceptance
"""
if new_cost <= old_cost:
return True
else:
delta = new_cost - old_cost
prob_accept = np.exp(-delta / float(T))
if verbose:
LOGGER.info("T = {}, p = {}".format(T, prob_accept))
if prob_accept > np.random.uniform(0, 1):
return True # ,prob_accept
else:
return False # ,prob_accept
def swap_pixels(X, p1=None, p2=None):
"""
Swap two allocations
:param X: numpy array for allocation
:param p1: posn 1 to swap
:param p2: posn 2 to swap
:return: numpy array of updated allocation
"""
if p1 is None or p2 is None:
# get two people
p1, p2 = np.random.choice(range(X.shape[0]), 2, replace=True)
# get location of seats
s1, s2 = np.argmax(X[p1, :]), np.argmax(X[p2, :])
# set both to 0
X[p1, :] = 0
X[p2, :] = 0
# switch seats
X[p1, s2] = 1
X[p2, s1] = 1
return X
def change_X(X):
"""
Update the data object by swapping two positions
:param X: Data object
:return: updated Data object
"""
_X = swap_pixels(X.X)
X.update(_X)
return X
class Data:
"""
Class to put all the stuff related to the data. Bit janky but it will do.
"""
def __init__(self, fname, fdir):
# name and dir of file
self.fname = fname
self.fdir = fdir
# name of the tabs in the sheets
self.names_tab = None
self.seats_tab = None
# placeholders
self.names = None
self.names_seats_dict = None
self.seats_names_dict = None
self.names_teams_dict = None
self.teams_names_dict = None
self.team_names = None
self.names_seats_dict_orig = None
self.seats = None
self.seat_locations = None
self.seats_graph = None
self.seat_distances = None
self.seats_arr = None
self.dij = None
self.pij = None
self.pij_orig = None
self.X = None
self.X_orig = None
self.X_prev = None
self.team_weights = None
# load the data
self.xl = load_data(fname)
def pre_process(self):
# load and process everything
self.get_names_teams_cur_seats()
self.get_seat_locations()
self.calc_dij()
self.calc_pij()
self.calc_X()
def update(self, X):
# update the Data based on a new arrangement
# store prev arrangement
self.X_prev = copy.deepcopy(X)
# reset to current
self.X = X
# update dict of allocations and its inverse
self.names_seats_dict = X_to_names_seats_dict(X, self.names, self.seats)
self.seats_names_dict = invert_dict(self.names_seats_dict)
# update person-person matrix
self.calc_pij()
def revert(self):
# revert to previous configuration
self.update(self.X_prev)
def update_team_weights(self, team_weights=None):
# add/update team weights
if team_weights is None:
self.team_weights = {nm: 1.0 for ind, nm in enumerate(self.team_names)}
else:
self.team_weights = team_weights
def get_names_teams_cur_seats(self, names_tab='names'):
self.names_tab = names_tab
self.names, self.names_seats_dict_orig, \
self.names_teams_dict = get_names_teams_cur_seats(self.xl, names=names_tab)
self.names_seats_dict = copy.deepcopy(self.names_seats_dict_orig)
# invert the dict
self.seats_names_dict = invert_dict(self.names_seats_dict)
self.teams_names_dict = invert_dict(self.names_teams_dict, append_list=True)
self.team_names = list(set(self.teams_names_dict.keys()))
def get_seat_locations(self, seats_tab='seat_map'):
self.seats_tab = seats_tab
self.seats, self.seat_locations, self.seats_graph, \
self.seat_distances, self.seats_arr = get_seat_locations(self.xl, seats=seats_tab)
def calc_dij(self):
self.dij = calc_dij(self.names, self.seats, self.seat_distances, self.names_seats_dict)
def calc_pij(self):
if self.pij_orig is None:
self.pij_orig = get_person_person_distance(self.names_seats_dict_orig, self.seat_distances, self.names)
self.pij = get_person_person_distance(self.names_seats_dict, self.seat_distances, self.names)
def calc_X(self):
if self.X_orig is None:
self.X_orig = names_seats_dict_to_X(self.names_seats_dict_orig, names=self.names, seats=self.seats)
self.X = names_seats_dict_to_X(self.names_seats_dict, names=self.names, seats=self.seats)
def copy(self):
return copy.deepcopy(self)
def teams_to_seat_arr(teams, seats_arr, allocated_seats):
if isinstance(teams.values()[0], int):
# plot the team dist
teams_seats_arr = np.zeros(seats_arr.shape)
else:
teams_seats_arr = np.chararray(seats_arr.shape)
for person, seat in allocated_seats.iteritems():
# get location for the seat
y, x = np.where(seats_arr == seat)
# now get the team for the
team = teams[person]
teams_seats_arr[y, x] = team
return teams_seats_arr
def names_to_seat_arr(teams, seats_arr, allocated_seats, numeric=False, names=None):
# plot the team dist
ny,nx = seats_arr.shape
if not numeric:
names_seats_arr = np.array([[' ']*nx]*ny, dtype=object)
else:
names_seats_arr = np.zeros((ny, nx))
for person, seat in allocated_seats.iteritems():
# get location for the seat
#print(person)
y, x = np.where(seats_arr == seat)
# now get the team for the
if not numeric:
names_seats_arr[y, x] = person
else:
names_seats_arr[y, x] = names.index(person)
return names_seats_arr