Skip to content

Latest commit

 

History

History
111 lines (81 loc) · 7.32 KB

benchmark.md

File metadata and controls

111 lines (81 loc) · 7.32 KB

Benchmark

This file contains some benchmark results of popular transfer learning (domain adaptation) methods gathered from published papers. Right now there are only results of the most popular Office+Caltech10 datasets. You're welcome to add more results.

The full list of datasets can be found in datasets.

Office+Caltech SURF

Dim Method C-A C-W C-D A-C A-W A-D W-C W-A W-D D-C D-A D-W
100 PCA+1NN 36.95 32.54 38.22 34.73 35.59 27.39 26.36 31 77.07 29.65 32.05 75.93
100 GFK+1NN 41.02 40.68 38.85 40.25 38.98 36.31 30.72 29.75 80.89 30.28 32.05 75.59
100 TCA+1NN 38.2 38.64 41.4 37.76 37.63 33.12 29.3 30.06 87.26 31.7 32.15 86.1
100 TSL+1NN 44.47 34.24 43.31 37.58 33.9 26.11 29.83 30.27 87.26 28.5 27.56 85.42
100 JDA+1NN 44.78 41.69 45.22 39.36 37.97 39.49 31.17 32.78 89.17 31.52 33.09 89.49
100 UDA+1NN 47.39 46.56 48.41 41.41 43.05 42.04 32.41 34.45 91.08 34.19 34.24 90.85
30 SA+1NN 49.27 40 39.49 39.98 33.22 33.76 35.17 39.25 75.16 34.55 39.87 76.95
30 SDA+1NN 49.69 38.98 40.13 39.54 30.85 33.76 34.73 39.25 75.8 35.89 38.73 76.95
30 GFK+1NN 46.03 36.95 40.76 40.69 36.95 40.13 24.76 27.56 85.35 29.3 28.71 80.34
30 TCA+1NN 45.82 31.19 34.39 42.39 36.27 33.76 29.39 28.91 89.17 30.72 31 86.1
30 JDA+1NN 45.62 41.69 45.22 39.36 37.97 39.49 31.17 32.78 89.17 31.52 33.09 89.49
30 TJM+1NN 46.76 38.98 44.59 39.45 42.03 45.22 30.19 29.96 89.17 31.43 32.78 85.42
30 SCA+1NN 45.62 40 47.13 39.72 34.92 39.49 31.08 29.96 87.26 30.72 31.63 84.41
30 JGSA+1NN 53.13 48.47 48.41 41.5 45.08 45.22 33.57 40.81 88.54 30.28 38.73 93.22
20 PCA+1NN 36.95 32.54 38.22 34.73 35.59 27.39 26.36 29.35 77.07 29.65 32.05 75.93
20 FSSL+1NN 35.88 32.32 37.53 33.91 34.35 26.37 25.85 29.53 76.79 27.89 30.61 74.99
20 TCA+1NN 45.82 30.51 35.67 40.07 35.25 34.39 29.92 28.81 85.99 32.06 31.42 86.44
20 GFK+1NN 41.02 40.68 38.85 40.25 38.98 36.31 30.72 29.75 80.89 30.28 32.05 75.59
20 TJM+1NN 46.76 38.98 44.59 39.45 42.03 45.22 30.19 29.96 89.17 31.43 32.78 85.42
20 VDA+1NN 46.14 46.1 51.59 42.21 51.19 48.41 27.6 26.1 89.18 31.26 37.68 90.85
no 1NN 23.7 25.76 25.48 26 29.83 25.48 19.86 22.96 59.24 26.27 28.5 63.39
no SVM 55.64 45.22 43.73 45.77 42.04 39.66 31.43 34.76 82.8 29.39 26.62 63.39
no LapSVM 56.27 45.8 43.73 44.23 42.74 39.79 31.99 34.77 83.43 29.49 27.37 64.31
no TKL 54.28 46.5 51.19 45.59 49.04 46.44 34.82 40.92 83.44 35.8 40.71 84.75
no KMM 48.32 45.78 53.53 42.21 42.38 42.72 29.01 31.94 71.98 31.61 32.2 72.88
no DTMKL 54.33 42.04 44.74 45.01 36.94 40.85 32.5 36.53 88.85 32.1 34.03 81.69
no SKM+SVM 53.97 43.31 43.05 44.7 37.58 42.37 31.34 35.07 89.81 30.37 30.27 81.02

Results are coming from:

  • 1~5:[4]
  • 6~15: [11]
  • 16~21: [12]
  • 22~28: [13]

Office+Caltech10 Decaf6

Luckily, there is one article [16] that gathers the results of many popular methods on Decaf6 features. The benchmark is as the following image from that article:

Office-31

More and more researches chose to compare the accuracy on Office-31 datasets. Here is the comparison of both traditional and deep methods:

Method A - D A - W D - A D - W W-A W-D Average
SVM 55.7 50.6 46.5 93.1 43.0 97.4 64.4
TCA 45.4 40.5 36.5 78.2 34.1 84.0 53.1
GFK 52.0 48.2 41.8 86.5 38.6 87.5 59.1
SA 46.2 42.5 39.3 78.9 36.3 80.6 54.0
DANN 34.0 34.1 20.1 62.0 21.2 64.4 39.3
CORAL 57.1 53.1 51.1 94.6 47.3 98.2 66.9
AlexNet 63.8 61.6 51.1 95.4 49.8 99.0 70.1
ResNet 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DDC 64.4 61.8 52.1 95.0 52.2 98.5 70.6
DAN 67.0 68.5 54.0 96.0 53.1 99.0 72.9
RTN 71.0 73.3 50.5 96.8 51.0 99.6 73.7
RevGrad 72.3 73.0 53.4 96.4 51.2 99.2 74.3
DCORAL 66.4 66.8 52.8 95.7 51.5 99.2 72.1
DUCDA 68.3 68.3 53.6 96.2 51.6 99.7 73.0
JAN(AlexNet) 71.8 74.9 58.3 96.6 55.0 99.5 76.0
JAN-A(AlexNet) 72.8 75.2 57.5 96.6 56.3 99.6 76.3
JAN(ResNet) 84.7 85.4 68.6 97.4 70.0 99.8 84.3
JAN-A(ResNet) 85.1 86.0 69.2 96.7 70.7 99.7 84.6

References

[1] Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 2066-2073.

[2] Russell B C, Torralba A, Murphy K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International journal of computer vision, 2008, 77(1): 157-173.

[3] Griffin G, Holub A, Perona P. Caltech-256 object category dataset[J]. 2007.

[4] Long M, Wang J, Ding G, et al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the IEEE International Conference on Computer Vision. 2013: 2200-2207.

[5] http://attributes.kyb.tuebingen.mpg.de/

[6] http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

[7] http://www.cs.dartmouth.edu/~chenfang/proj_page/FXR_iccv13/

[8] M. Everingham, L. Van-Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010.

[9] M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky, “Exploiting hierarchical context on a large database of object categories,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogit., 2010, pp. 129–136

[10] http://www.uow.edu.au/~jz960/

[11] Zhang J, Li W, Ogunbona P. Joint Geometrical and Statistical Alignment for Visual Domain Adaptation[C]. CVPR 2017.

[12] Tahmoresnezhad J, Hashemi S. Visual domain adaptation via transfer feature learning[J]. Knowledge and Information Systems, 2017, 50(2): 585-605.

[13] Long M, Wang J, Sun J, et al. Domain invariant transfer kernel learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(6): 1519-1532.

[14] Venkateswara H, Eusebio J, Chakraborty S, et al. Deep hashing network for unsupervised domain adaptation[C]. CVPR 2017.

[15] Daumé III H. Frustratingly easy domain adaptation[J]. arXiv preprint arXiv:0907.1815, 2009.

[16] Luo L, Chen L, Hu S. Discriminative Label Consistent Domain Adaptation[J]. arXiv preprint arXiv:1802.08077, 2018.