forked from matthewearl/deep-anpr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
196 lines (158 loc) · 6.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import functools
import glob
import itertools
import multiprocessing
import random
import sys
import time
import cv2
import numpy
import tensorflow as tf
import common
import gen
import model
def code_to_vec(p, code):
def char_to_vec(c):
y = numpy.zeros((len(common.CHARS),))
y[common.CHARS.index(c)] = 1.0
return y
c = numpy.vstack([char_to_vec(c) for c in code])
return numpy.concatenate([[1. if p else 0], c.flatten()])
def read_data(img_glob):
for fname in sorted(glob.glob(img_glob)):
im = cv2.imread(fname)[:, :, 0].astype(numpy.float32) / 255.
code = fname.split("/")[1][9:16]
p = fname.split("/")[1][17] == '1'
yield im, code_to_vec(p, code)
def unzip(b):
xs, ys = zip(*b)
xs = numpy.array(xs)
ys = numpy.array(ys)
return xs, ys
def batch(it, batch_size):
out = []
for x in it:
out.append(x)
if len(out) == batch_size:
yield out
out = []
if out:
yield out
def mpgen(f):
def main(q, args, kwargs):
try:
for item in f(*args, **kwargs):
q.put(item)
finally:
q.close()
@functools.wraps(f)
def wrapped(*args, **kwargs):
q = multiprocessing.Queue(3)
proc = multiprocessing.Process(target=main,
args=(q, args, kwargs))
proc.start()
try:
while True:
item = q.get()
yield item
finally:
proc.terminate()
proc.join()
return wrapped
@mpgen
def read_batches(batch_size):
def gen_vecs():
for im, c, p in gen.generate_ims(batch_size, bg_prob=0.0):
yield im, code_to_vec(p, c)
while True:
yield unzip(gen_vecs())
def train(learn_rate, report_steps, batch_size, initial_weights=None):
x, y, params = model.get_training_model()
y_ = tf.placeholder(tf.float32, [None, 7 * len(common.CHARS) + 1])
digits_loss = tf.nn.softmax_cross_entropy_with_logits(
tf.reshape(y[:, 1:],
[-1, len(common.CHARS)]),
tf.reshape(y_[:, 1:],
[-1, len(common.CHARS)]))
digits_loss = tf.reduce_sum(digits_loss)
presence_loss = 10. * tf.nn.sigmoid_cross_entropy_with_logits(
y[:, :1], y_[:, :1])
presence_loss = tf.reduce_sum(presence_loss)
cross_entropy = digits_loss + presence_loss
train_step = tf.train.AdamOptimizer(learn_rate).minimize(cross_entropy)
best = tf.argmax(tf.reshape(y[:, 1:], [-1, 7, len(common.CHARS)]), 2)
correct = tf.argmax(tf.reshape(y_[:, 1:], [-1, 7, len(common.CHARS)]), 2)
if initial_weights is not None:
assert len(params) == len(initial_weights)
assign_ops = [w.assign(v) for w, v in zip(params, initial_weights)]
init = tf.initialize_all_variables()
def vec_to_plate(v):
return "".join(common.CHARS[i] for i in v)
def do_report():
r = sess.run([best,
correct,
tf.greater(y[:, 0], 0),
y_[:, 0],
digits_loss,
presence_loss,
cross_entropy],
feed_dict={x: test_xs, y_: test_ys})
num_correct = numpy.sum(
numpy.logical_or(
numpy.all(r[0] == r[1], axis=1),
numpy.logical_and(r[2] < 0.5,
r[3] < 0.5)))
r_short = (r[0][:190], r[1][:190], r[2][:190], r[3][:190])
for b, c, pb, pc in zip(*r_short):
print "{} {} <-> {} {}".format(vec_to_plate(c), pc,
vec_to_plate(b), float(pb))
num_p_correct = numpy.sum(r[2] == r[3])
print ("B{:3d} {:2.02f}% {:02.02f}% loss: {} "
"(digits: {}, presence: {}) |{}|").format(
batch_idx,
100. * num_correct / (len(r[0])),
100. * num_p_correct / len(r[2]),
r[6],
r[4],
r[5],
"".join("X "[numpy.array_equal(b, c) or (not pb and not pc)]
for b, c, pb, pc in zip(*r_short)))
def do_batch():
sess.run(train_step,
feed_dict={x: batch_xs, y_: batch_ys})
if batch_idx % report_steps == 0:
do_report()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
sess.run(init)
if initial_weights is not None:
sess.run(assign_ops)
test_xs, test_ys = unzip(list(read_data("test/*.png"))[:50])
try:
last_batch_idx = 0
last_batch_time = time.time()
batch_iter = enumerate(read_batches(batch_size))
for batch_idx, (batch_xs, batch_ys) in batch_iter:
do_batch()
if batch_idx % report_steps == 0:
batch_time = time.time()
if last_batch_idx != batch_idx:
print "time for 60 batches {}".format(
60 * (last_batch_time - batch_time) /
(last_batch_idx - batch_idx))
last_batch_idx = batch_idx
last_batch_time = batch_time
except KeyboardInterrupt:
last_weights = [p.eval() for p in params]
numpy.savez("weights.npz", *last_weights)
if __name__ == "__main__":
if len(sys.argv) > 1:
f = numpy.load(sys.argv[1])
initial_weights = [f[n] for n in sorted(f.files,
key=lambda s: int(s[4:]))]
else:
initial_weights = None
train(learn_rate=0.001,
report_steps=20,
batch_size=50,
initial_weights=initial_weights)