-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMobileNet
65 lines (56 loc) · 1.9 KB
/
MobileNet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Import the libraries
import numpy as np
import keras
import random
import psutil
from keras.datasets import mnist
from keras import backend as K
from tqdm import tqdm
from scipy import misc
import tensorflow as tf
np.random.seed(2017)
tf.set_random_seed(2017)
# Load the dataset
(X_train, y_train), (X_test, y_test) = mnist.load_data()
height,width = 56,56
from keras.applications.mobilenet import MobileNet
from keras.layers import Input,Dense,Dropout,Lambda
from keras.models import Model
from keras import backend as K
# Build the model
input_image = Input(shape=(height,width))
input_image_ = Lambda(lambda x: K.repeat_elements(K.expand_dims(x,3),3,3))(input_image)
base_model = MobileNet(input_tensor=input_image_, include_top=False, pooling='avg')
output = Dropout(0.5)(base_model.output)
predict = Dense(10, activation='softmax')(output)
# Compile the model
model = Model(inputs=input_image, outputs=predict)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()
X_train = X_train.reshape((-1,28,28))
X_train = np.array([misc.imresize(x, (height,width)).astype(float) for x in tqdm(iter(X_train))])/255.
X_test = X_test.reshape((-1,28,28))
X_test = np.array([misc.imresize(x, (height,width)).astype(float) for x in tqdm(iter(X_test))])/255.
def random_reverse(x):
if np.random.random() > 0.5:
return x[:,::-1]
else:
return x
# Data-augmentation
def data_generator(X,Y,batch_size=100):
while True:
idxs = np.random.permutation(len(X))
X = X[idxs]
Y = Y[idxs]
p,q = [],[]
for i in range(len(X)):
p.append(random_reverse(X[i]))
q.append(Y[i])
if len(p) == batch_size:
yield np.array(p),np.array(q)
p,q = [],[]
if p:
yield np.array(p),np.array(q)
p,q = [],[]
# Train the model
model.fit_generator(data_generator(X_train,y_train), steps_per_epoch=600, epochs=20, validation_data=data_generator(X_test,y_test), validation_steps=100)