forked from amas-eye/amas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Metrics.md
695 lines (628 loc) · 41.4 KB
/
Metrics.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
# Metrics汇总(部分)
## metric 命名规范
- ```(总控件).控件.采集指标名 timestamp value tagk=tagv(...)```
- eg: ```hadoop.hbase.averageload 1234567890 value host=$hostname node=master1```
## 系统基础服务性能指标
- net_dev.py
```
cluster.net.dev.receive 网卡总接收字节数
cluster.net.dev.transmit 网卡总发出字节数
```
- netstat.py(一般不使用配置给用户,暂时不标注)
```
net.sockstat.num_sockets
net.sockstat.num_timewait
net.sockstat.sockets_inuse
net.sockstat.num_orphans
net.sockstat.memory
net.sockstat.ipfragqueues
net.stat.tcp.invalid_sack
net.stat.tcp.delayedack
net.stat.tcp.reording
net.stat.tcp.abort
net.stat.tcp.failed_accept
net.stat.tcp.abort
net.stat.tcp.syncookies
net.stat.tcp.packetloss.recovery
net.stat.tcp.congestion.recovery
net.stat.tcp.invalid_sack
net.stat.tcp.delayedack
net.stat.tcp.retransmit
net.stat.tcp.memory.pressure
net.stat.tcp.congestion.recovery
net.stat.tcp.memory.prune
net.stat.tcp.invalid_sack
net.stat.tcp.reording
net.stat.tcp.delayedack
net.stat.tcp.congestion.recovery
net.stat.tcp.reording 1510732766 85 detectedby=fack
net.stat.tcp.memory.prune
net.stat.tcp.syncookies
net.stat.tcp.receive.queue.full
net.stat.tcp.failed_accept
net.stat.tcp.congestion.recovery
net.stat.tcp.retransmit
net.stat.tcp.reording
net.stat.tcp.abort.failed
net.stat.tcp.packetloss.recovery
net.stat.udp.datagrams
net.stat.udp.errors
```
- ifstat.py
```
proc.net.bytes 网卡的字节数 (需要看方向,方向在tag中会显示)
proc.net.packets 网卡的包的数量(方向是in/out)
proc.net.errs 网卡错误包的数
proc.net.dropped 网卡丢包书
proc.net.fifo.errs 网卡队列错误数
proc.net.frame.errs 网卡帧的错误数
proc.net.compressed 网卡是否启用压缩
```
- mysql.py
```
mysql.innodb.buffer_pool_free InnoDB 缓冲池空闲页面数 #show status; Innodb_buffer_pool_pages_free
mysql.innodb.buffer_pool_total InnoDB 缓冲池的总页数 #show status; Innodb_buffer_pool_pages_total
mysql.innodb.buffer_pool_used InnoDB 缓冲池中已使用的页数 #show status; Innodb_buffer_pool_pages_free
mysql.innodb.buffer_pool_utilization fractions InnoDB 的缓冲池的利用率 #show status;total-free/toatl
mysql.innodb.current_row_locks The number of current row locks. #show status;Innodb_row_lock_current_waits
mysql.innodb.data_reads 数据的读取速率 (读的次数/s) #show status; Innodb_data_reads
mysql.innodb.data_writes 数据的写速率 (写的次数/s) #show status; Innodb_data_writes
mysql.innodb.mutex_os_waits events/second The rate of mutex OS waits.
mysql.innodb.mutex_spin_rounds events/second The rate of mutex spin rounds.
mysql.innodb.mutex_spin_waits events/second The rate of mutex spin waits.
mysql.innodb.os_log_fsyncs fsync 写入日志文件的速率(写的次数/s) #show status; Innodb_os_log_fsyncs
mysql.innodb.row_lock_time 花费在 acquring 行锁上的时间(millisecond/s)#show status; Innodb_row_lock_time
mysql.innodb.row_lock_waits 行锁每秒要等待的次数(event/s) #show status; Innodb_row_lock_waits
mysql.net.connections connections/second 连接到服务器的速率(连接数量/s) #
mysql.net.max_connections 服务器启动同时使用的最大数目连接数 # show status;Max_used_connections
mysql.performance.com_delete 删除语句的速率(次数/s) # #show status;Com_delete
mysql.performance.com_delete_multi 删除多语句的速率(次数/s)#show status;Com_delete_multi
mysql.performance.com_insert 插入语句的速率(次数/s) #show status;Com_insert
mysql.performance.com_insert_select 插入 SELECT 语句的速率(次数/s)#show status;Com_insert_select
mysql.performance.com_replace_select 代替 SELECT 语句的速度(次数/s) #show status;Com_replace_select
mysql.performance.com_select SELECT 语句的速度(次数/s) # show status;Com_select
mysql.performance.com_update 更新语句的速度(次数/s) # show status;Com_update
mysql.performance.com_update_multi 更新多语句的速度(次数/s) #show status;Com_update_multi
mysql.performance.created_tmp_disk_tables 执行语句时每秒创建的服务器内部磁盘上的临时表的数量 (表数量/s) #show status;Created_tmp_disk_tables
mysql.performance.created_tmp_files 每秒创建临时文件的数量 (文件数/s) #show stats;Created_tmp_files
mysql.performance.created_tmp_tables 每秒执行语句时创建的服务器内部临时表的数量(表数量/s)#show stats;Created_tmp_tables
mysql.performance.kernel_time MySQL 在内核空间中花费的 CPU 时间占比
mysql.performance.key_cache_utilization fractions 键缓存利用率 (百分比)
mysql.performance.open_files 打开的文件数 #show status; Open_files
mysql.performance.open_tables 打开的表数量 #show status; Open_tables
mysql.performance.qcache_hits 查询缓存命中率 #show status; Qcache_hits
mysql.performance.queries 查询的速率 (次数/s) #show status; Queries
mysql.performance.questions 服务器执行的语句的速率(次数/s)#show status; Questions
mysql.performance.slow_queries 慢查询的速率(次数/s) #show status; Slow_queries
mysql.performance.table_locks_waited 由于表锁定请求无法处理需要等待的总次数 #show status; Table_locks_waited
mysql.performance.threads_connected 当前打开的连接的数量 #show status;Threads_connected
mysql.performance.threads_running 正在运行的线程数 #show status;Threads_running
mysql.performance.user_time percent MySQL 在用户空间中花费的 CPU 时间占比
mysql.replication.seconds_behind_master seconds 主服务器(master)和从服务器(slave)之间的滞后时间 #show slave status;Seconds_Behind_Master
mysql.replication.slave_running 一个布尔值,判断该服务器是否为连接到主服务器(master)的从服务器(slave) #show slave status 对两个thread进行判断
mysql.performance.lock_table #show status; Com_lock_tables
```
## 大数据平台性能指标
对于大数据中有进行jvm采集的部分指标说明(hdfs、hbase、mapreduce)
- hadoop.xx.jvm.$metric
具体metric如下
MemNonHeapUsedM
MemNonHeapCommittedM
MemNonHeapMaxM
MemHeapUsedM
MemHeapCommittedM
MemHeapMaxM
MemMaxM
GcCountParNew
GcTimeMillisParNew
GcCountConcurrentMarkSweep
GcTimeMillisConcurrentMarkSweep
GcCount ## Gc的总次数
GcTimeMillis ## Gc的总时间(单位:毫秒)
ThreadsNew ## 新建线程
ThreadsRunnable ## 运行线程
ThreadsBlocked ## 阻塞线程
ThreadsWaiting ## 等待线程是
ThreadsTimedWaiting ## 限时等待线程数(有timeout)
ThreadsTerminated ## 终结线程
LogFatal ## 严重错误
LogError ## 错误
LogWarn
LogInfo
- hbase.py
#(通过获取配置文件得到本机运行的项目)
node = master[num]
- hadoop.hbase.Master.mergePlanCount ###
- hadoop.hbase.Master.splitPlanCount ###
- hadoop.hbase.Master.averageLoad ###平均负载
- hadoop.hbase.Master.numRegionServers ###存活的Region
- hadoop.hbase.Master.numDeadRegionServers ###死去的Region
- hadoop.hbase.Master.clusterRequests ###集群总请求数
- hadoop.hbase.Master.ritOldestAge # Master管理下的region 状态迁移的最长时间
- hadoop.hbase.Master.ritCountOverThreshold # 状态迁移超过阈值(默认为60秒)
- hadoop.hbase.Master.BulkAssign_num_ops # 批量迁移状态的操作数
- hadoop.hbase.Master.BulkAssign_min # 批量迁移状态的最小用时
- hadoop.hbase.Master.BulkAssign_max # 批量迁移状态的最长用时
- hadoop.hbase.Master.BulkAssign_mean # 批量迁移状态的平均用时
- hadoop.hbase.Master.ritCount # 转移状态中的regionserver
- hadoop.hbase.Master.Assign_num_ops # 单个迁移状态的操作数
- hadoop.hbase.Master.Assign_min # 单个迁移状态的最短时间
- hadoop.hbase.Master.Assign_max # 单个迁移状态的最长时间
- hadoop.hbase.Master.Assign_mean # 单个迁移状态的平均时间
- hadoop.hbase.Master.queueSize # 排队队列大小
- hadoop.hbase.Master.numCallsInGeneralQueue # 普通队列调用数
- hadoop.hbase.Master.numCallsInReplicationQueue # 副本队列调用数
- hadoop.hbase.Master.numCallsInPriorityQueue # 优先队列调用数
- hadoop.hbase.Master.numOpenConnections # 保持的链接数的大小
- hadoop.hbase.Master.numActiveHandler # 活跃的handler
- hadoop.hbase.Master.numGeneralCallsDropped # 丢失的普通请求数
- hadoop.hbase.Master.numLifoModeSwitches # 栈模式切换数
- hadoop.hbase.Master.receivedBytes # 接收到的数量
- hadoop.hbase.Master.exceptions.RegionMovedException # Region状态迁移错误数
- hadoop.hbase.Master.exceptions.multiResponseTooLarge # 接收到多个相应超出限定阈值
- hadoop.hbase.Master.authenticationSuccesses # 认证成功数
- hadoop.hbase.Master.authorizationFailures # 授权失败数
- hadoop.hbase.Master.exceptions.RegionTooBusyException # Region_server任务过多导致错误的数量
- hadoop.hbase.Master.exceptions.FailedSanityCheckException #
- hadoop.hbase.Master.exceptions.UnknownScannerException # 未知扫描错误
- hadoop.hbase.Master.exceptions.OutOfOrderScannerNextException # 乱序扫描错误
- hadoop.hbase.Master.exceptions # 总错误数
- hadoop.hbase.Master.ProcessCallTime_num_ops # 总操作数
- hadoop.hbase.Master.ProcessCallTime_min # 处理时间最小值
- hadoop.hbase.Master.ProcessCallTime_max # 处理时间最大值
- hadoop.hbase.Master.ProcessCallTime_mean # 处理时间平均值
- hadoop.hbase.Master.authenticationFallbacks # 认证退却
- hadoop.hbase.Master.exceptions.NotServingRegionException #
- hadoop.hbase.Master.exceptions.callQueueTooBig # 等待队列满错误
- hadoop.hbase.Master.authorizationSuccesses # 授权成功
- hadoop.hbase.Master.exceptions.ScannerResetException # 扫描器重置错误
- hadoop.hbase.Master.sentBytes # 发送字节数
- hadoop.hbase.Master.QueueCallTime_num_ops # 队列调用次数
- hadoop.hbase.Master.QueueCallTime_min # 调用最短时间
- hadoop.hbase.Master.QueueCallTime_max # 调用最长时间
- hadoop.hbase.Master.QueueCallTime_mean # 调用平均时间
- hadoop.hbase.Master.authenticationFailures # 认证失败次数
node = RegionServer
- hadoop.hbase.RegionServer.jvm.ThreadsWaiting
- hadoop.hbase.RegionServer.jvm.ThreadsTerminated
- hadoop.hbase.RegionServer.jvm.LogError
- hadoop.hbase.RegionServer.jvm.MemNonHeapCommittedM
- hadoop.hbase.RegionServer.jvm.GcTimeMillis
- hadoop.hbase.RegionServer.jvm.MemHeapMaxM
- hadoop.hbase.RegionServer.jvm.MemHeapUsedM
- hadoop.hbase.RegionServer.jvm.ThreadsBlocked
- hadoop.hbase.RegionServer.jvm.LogWarn
- hadoop.hbase.RegionServer.jvm.GcTimeMillisConcurrentMarkSweep
- hadoop.hbase.RegionServer.jvm.GcTimeMillisParNew
- hadoop.hbase.RegionServer.jvm.MemHeapCommittedM
- hadoop.hbase.RegionServer.jvm.GcCountParNew
- hadoop.hbase.RegionServer.jvm.MemNonHeapMaxM
- hadoop.hbase.RegionServer.jvm.GcCountConcurrentMarkSweep
- hadoop.hbase.RegionServer.jvm.ThreadsNew
- hadoop.hbase.RegionServer.jvm.ThreadsRunnable
- hadoop.hbase.RegionServer.jvm.GcCount
- hadoop.hbase.RegionServer.jvm.ThreadsTimedWaiting
- hadoop.hbase.RegionServer.jvm.MemMaxM
- hadoop.hbase.RegionServer.jvm.LogInfo
- hadoop.hbase.RegionServer.jvm.LogFatal
- hadoop.hbase.RegionServer.jvm.MemNonHeapUsedM
## 上面为 JVm通用部分,请查看JVM部分解释,此处不再重复
- hadoop.hbase.RegionServer.RSServer.Replay_max # 最长重发=放时间
- hadoop.hbase.RegionServer.RSServer.regionCount # RegionServer所拥有的Region数量
- hadoop.hbase.RegionServer.RSServer.storeFileCount # 被RegionServer管理的文件个数
- hadoop.hbase.RegionServer.RSServer.Mutate_num_ops # 修改操作数
- hadoop.hbase.RegionServer.RSServer.totalRequestCount # 总请求数
- hadoop.hbase.RegionServer.RSServer.Increment_max # 最长新增时间
- hadoop.hbase.RegionServer.RSServer.writeRequestCount # 写请求数
- hadoop.hbase.RegionServer.RSServer.Increment_mean # 最短新增时间
- hadoop.hbase.RegionServer.RSServer.percentFilesLocal # 本Regionserver中本地可以应对请求的百分比
- hadoop.hbase.RegionServer.RSServer.Append_num_ops # 追加操作数
- hadoop.hbase.RegionServer.RSServer.mutationsWithoutWALCount # 写入时带上标记来绕过aheadlog的次数
- hadoop.hbase.RegionServer.RSServer.storeFileSize # 存储文件的总大小
- hadoop.hbase.RegionServer.RSServer.Get_mean # 平均获取时间
- hadoop.hbase.RegionServer.RSServer.Increment_min # 最短新增时间
- hadoop.hbase.RegionServer.RSServer.Replay_num_ops # 重放操作数
- hadoop.hbase.RegionServer.RSServer.blockCacheExpressHitPercent # 请求可以请求到缓存的数量占总请求数的时间
- hadoop.hbase.RegionServer.RSServer.Get_num_ops # 获取操作数
- hadoop.hbase.RegionServer.RSServer.Get_max # 最长获取时间
- hadoop.hbase.RegionServer.RSServer.readRequestCount # 读取请求的数量
- hadoop.hbase.RegionServer.RSServer.blockCacheHitCount # 请求到缓存的块数量
- hadoop.hbase.RegionServer.RSServer.slowGetCount # 读取的慢操作次数
- hadoop.hbase.RegionServer.RSServer.Append_max # 追加最长操作时间
- hadoop.hbase.RegionServer.RSServer.Increment_num_ops # 新增数据操作
- hadoop.hbase.RegionServer.RSServer.Mutate_min # 最短修改数据时间
- hadoop.hbase.RegionServer.RSServer.updatesBlockedTime # 更新阻塞时间
- hadoop.hbase.RegionServer.RSServer.blockCacheMissCount # 没有请求到缓存的块的数量
- hadoop.hbase.RegionServer.RSServer.Append_mean # 平均追加时间
- hadoop.hbase.RegionServer.RSServer.hlogFileCount # 比日志超前的写入数量
- hadoop.hbase.RegionServer.RSServer.Replay_min # 重放最短时间
- hadoop.hbase.RegionServer.RSServer.Mutate_max # 修改最长时间
- hadoop.hbase.RegionServer.RSServer.Mutate_mean # 平均修改时间
- hadoop.hbase.RegionServer.RSServer.Get_min # 最短获取时间
- hadoop.hbase.RegionServer.RSServer.Append_min # 最短追加时间
- hadoop.hbase.RegionServer.RSIpc.exceptions.UnknownScannerException # 未知扫描器错误
- hadoop.hbase.RegionServer.RSIpc.ProcessCallTime_mean # 最短处理时间
- hadoop.hbase.RegionServer.RSIpc.numCallsInPriorityQueue # 优先队列调用次数
- hadoop.hbase.RegionServer.RSIpc.QueueCallTime_min # 队列最短调用时间
- hadoop.hbase.RegionServer.RSIpc.ProcessCallTime_num_ops # 处理的次数
- hadoop.hbase.RegionServer.RSIpc.QueueCallTime_mean # 队列调用平均时间
- hadoop.hbase.RegionServer.RSIpc.exceptions.multiResponseTooLarge # 响应大小超过阈值错误
- hadoop.hbase.RegionServer.RSIpc.QueueCallTime_num_ops # 队列调用次数
- hadoop.hbase.RegionServer.RSIpc.ProcessCallTime_max # 最长处理时间
- hadoop.hbase.RegionServer.RSIpc.numCallsInGeneralQueue # 普通队列调用次数
- hadoop.hbase.RegionServer.RSIpc.numCallsInReplicationQueue # 副本队列调用次数
- hadoop.hbase.RegionServer.RSIpc.numActiveHandler # 活跃的连接数
- hadoop.hbase.RegionServer.RSIpc.QueueCallTime_max # 队列最长调用时间
- hadoop.hbase.RegionServer.RSIpc.ProcessCallTime_min # 最短处理时间
- hadoop.hbase.RegionServer.RSIpc.exceptions.RegionMovedException # region移动错误
- hdfs.py
#(通过获取配置文件得到本机运行的项目)
node = namenode
- hadoop.hdfs.NameNode.jvm.ThreadsWaiting
- hadoop.hdfs.NameNode.jvm.MemNonHeapUsedM
- hadoop.hdfs.NameNode.jvm.MemNonHeapCommittedM
- hadoop.hdfs.NameNode.jvm.GcNumInfoThresholdExceeded
- hadoop.hdfs.NameNode.jvm.GcTimeMillis
- hadoop.hdfs.NameNode.jvm.MemHeapMaxM
- hadoop.hdfs.NameNode.jvm.MemHeapUsedM
- hadoop.hdfs.NameNode.jvm.ThreadsBlocked
- hadoop.hdfs.NameNode.jvm.LogWarn
- hadoop.hdfs.NameNode.jvm.LogError
- hadoop.hdfs.NameNode.jvm.MemHeapCommittedM
- hadoop.hdfs.NameNode.jvm.MemNonHeapMaxM
- hadoop.hdfs.NameNode.jvm.ThreadsNew
- hadoop.hdfs.NameNode.jvm.ThreadsRunnable
- hadoop.hdfs.NameNode.jvm.GcCount
- hadoop.hdfs.NameNode.jvm.ThreadsTimedWaiting
- hadoop.hdfs.NameNode.jvm.MemMaxM
- hadoop.hdfs.NameNode.jvm.GcTotalExtraSleepTime
- hadoop.hdfs.NameNode.jvm.GcNumWarnThresholdExceeded
- hadoop.hdfs.NameNode.jvm.LogInfo
- hadoop.hdfs.NameNode.jvm.LogFatal
- hadoop.hdfs.NameNode.jvm.ThreadsTerminated
# 与通用的JVM指标相同,具体详情请看JVM部分解析
- hadoop.hdfs.NameNode.Activity.RenameSnapshotOps #
- hadoop.hdfs.NameNode.Activity.TotalFileOps #
- hadoop.hdfs.NameNode.Activity.GetAdditionalDatanodeOps #
- hadoop.hdfs.NameNode.Activity.BlockReportNumOps #
- hadoop.hdfs.NameNode.Activity.TransactionsNumOps # Total number of Journal transactions
- hadoop.hdfs.NameNode.Activity.BlockReportAvgTime #
- hadoop.hdfs.NameNode.Activity.CreateSymlinkOps #
- hadoop.hdfs.NameNode.Activity.StorageBlockReportOps #
- hadoop.hdfs.NameNode.Activity.FilesRenamed #
- hadoop.hdfs.NameNode.Activity.SafeModeTime # 运行在安全模式的时间
- hadoop.hdfs.NameNode.Activity.FilesInGetListingOps #
- hadoop.hdfs.NameNode.Activity.BlockOpsQueued # 排队的块操作相关次数
- hadoop.hdfs.NameNode.Activity.GetLinkTargetOps #
- hadoop.hdfs.NameNode.Activity.PutImageNumOps # Total number of fsimage uploads to SecondaryNameNode
- hadoop.hdfs.NameNode.Activity.GetEditAvgTime #
- hadoop.hdfs.NameNode.Activity.SnapshotDiffReportOps #
- hadoop.hdfs.NameNode.Activity.CacheReportNumOps #
- hadoop.hdfs.NameNode.Activity.FsImageLoadTime #
- hadoop.hdfs.NameNode.Activity.TransactionsAvgTime #
- hadoop.hdfs.NameNode.Activity.GetListingOps #
- hadoop.hdfs.NameNode.Activity.GetEditNumOps #
- hadoop.hdfs.NameNode.Activity.AddBlockOps # Total number of addBlock operations succeeded
- hadoop.hdfs.NameNode.Activity.AllowSnapshotOps # Total number of allowSnapshot operations
- hadoop.hdfs.NameNode.Activity.BlockReceivedAndDeletedOps #
- hadoop.hdfs.NameNode.Activity.CacheReportAvgTime #
- hadoop.hdfs.NameNode.Activity.TransactionsBatchedInSync #
- hadoop.hdfs.NameNode.Activity.ListSnapshottableDirOps #
- hadoop.hdfs.NameNode.Activity.FilesTruncated #
- hadoop.hdfs.NameNode.Activity.DisallowSnapshotOps #
- hadoop.hdfs.NameNode.Activity.GetBlockLocations #
- hadoop.hdfs.NameNode.Activity.GetImageNumOps #
- hadoop.hdfs.NameNode.Activity.SyncsAvgTime #
- hadoop.hdfs.NameNode.Activity.CreateSnapshotOps # 创建快照的数量
- hadoop.hdfs.NameNode.Activity.DeleteSnapshotOps # 删除快照的数量
- hadoop.hdfs.NameNode.Activity.SyncsNumOps #
- hadoop.hdfs.NameNode.Activity.FileInfoOps #
- hadoop.hdfs.NameNode.Activity.CreateFileOps # 创建文件操作数
- hadoop.hdfs.NameNode.Activity.GetImageAvgTime #
- hadoop.hdfs.NameNode.Activity.BlockOpsBatched #
- hadoop.hdfs.NameNode.Activity.FilesDeleted # 文件删除数
- hadoop.hdfs.NameNode.Activity.PutImageAvgTime #
- hadoop.hdfs.NameNode.Activity.DeleteFileOps # 删除文件操作数
- hadoop.hdfs.NameNode.Activity.FilesCreated # 文件创建数
- hadoop.hdfs.NameNode.Activity.FilesAppended # Total number of files and directories created by create or mkdir operations
- hadoop.hdfs.NameNode.FSState.NumDecomDeadDataNodes # Total number of files appended
- hadoop.hdfs.NameNode.FSState.BlockDeletionStartTime #
- hadoop.hdfs.NameNode.FSState.NumLiveDataNodes #
- hadoop.hdfs.NameNode.FSState.FilesTotal # Current number of files and directories
- hadoop.hdfs.NameNode.FSState.SnapshotStats #
- hadoop.hdfs.NameNode.FSState.PendingReplicationBlocks # Current number of blocks pending to be replicated
- hadoop.hdfs.NameNode.FSState.NumEncryptionZones #
- hadoop.hdfs.NameNode.FSState.PendingDeletionBlocks # Current number of blocks pending deletion
- hadoop.hdfs.NameNode.FSState.UnderReplicatedBlocks #
- hadoop.hdfs.NameNode.FSState.FsLockQueueLength #
- hadoop.hdfs.NameNode.FSState.FSState #
- hadoop.hdfs.NameNode.FSState.ScheduledReplicationBlocks # Current number of blocks scheduled for replications
- hadoop.hdfs.NameNode.FSState.TotalLoad # Current number of connections
- hadoop.hdfs.NameNode.FSState.VolumeFailuresTotal #
- hadoop.hdfs.NameNode.FSState.EstimatedCapacityLostTotal #
- hadoop.hdfs.NameNode.FSState.CapacityTotal #
- hadoop.hdfs.NameNode.FSState.BlocksTotal # Current number of allocated blocks in the system
- hadoop.hdfs.NameNode.FSState.NumStaleDataNodes #
- hadoop.hdfs.NameNode.FSState.NumDeadDataNodes # 死去的DataNode数量
- hadoop.hdfs.NameNode.FSState.NumStaleStorages # 过期的DataNode数量
- hadoop.hdfs.NameNode.FSState.NumDecomLiveDataNodes #
- hadoop.hdfs.NameNode.FSState.CapacityUsed # Current used capacity across all DataNodes in bytes
- hadoop.hdfs.NameNode.FSState.NumDecommissioningDataNodes #
- hadoop.hdfs.NameNode.FSState.CapacityRemaining #
- hadoop.hdfs.NameNode.FSState.MaxObjects #
node = datanode
- hadoop.hdfs.BlockVerificationFailures 检查失败的块的个数
- hadoop.hdfs.BlockReportsAvgTime 被阻塞的平均时间
- hadoop.hdfs.BlockReportsNumOps 被阻塞的操作总数
- hadoop.hdfs.HeartbeatsAvgTime 平均心跳时间
- hadoop.hdfs.DatanodeNetworkErrors DadaNode节点网络错误
- hadoop.hdfs.HeartbeatsNumOps 心跳个数
- hadoop.hdfs.ReplaceBlockOpNumOps 替换操作发生的总数
- hadoop.hdfs.VolumeFailures 发生错误的volume的个数
- hadoop.hdfs.ReplaceBlockOpAvgTime 替换操作使用的平均时间
- hadoop.hdfs.datanode.rpc.RpcSlowCalls ## 慢调用次数
- hadoop.hdfs.datanode.rpc.RpcQueueTimeAvgTime ## 平均排队时间(单位为毫秒)
- hadoop.hdfs.datanode.rpc.RpcClientBackoff ##
- hadoop.hdfs.datanode.rpc.NumOpenConnections ## 保持的连接数
- hadoop.hdfs.datanode.rpc.RpcQueueTimeNumOps ## 调用的总次数
- hadoop.hdfs.datanode.rpc.RpcAuthorizationFailures
- hadoop.hdfs.datanode.rpc.RpcAuthenticationSuccesses ##
- hadoop.hdfs.datanode.rpc.RpcProcessingTimeAvgTime ## 调用的平均处理时间
- hadoop.hdfs.datanode.rpc.RpcProcessingTimeNumOps ## 与调用的总次数相同
- hadoop.hdfs.datanode.rpc.RpcAuthenticationFailures ## 远程调用的认证成功次数
- hadoop.hdfs.datanode.rpc.RpcAuthorizationSuccesses ## 远程调用的认证失败次数
- hadoop.hdfs.datanode.rpc.CallQueueLength ## 远程调用队列的长度
- hive.py
node = metastore
要获取hive_server 和 hive_metastore的PID
- hadoop.hive.metastore.linkconut #metastore的连接数 ,使用lsof -i|grep "$Pid"
# 通过pidstat来获取的参数
-- pidstat -u
- hadoop.hive.cpu_user_rate 用户态cpu使用率
- hadoop.hive.cpu_system_rate 内核态cpu使用率
-- pidstat -d
- hadoop.hive.disk.read_speed 读取速度
- hadoop.hive.disk.write_speed 写入速度
-- pidstat -r
- hadoop.hive.mem_virtual 虚拟内存大小
- hadoop.hive.mem_rss
- hadoop.hive.db_connected #0为失败,1为成功(考虑中),如何复用jdbc的连接
node = hive_server
# 通过pidstat来获取的参数
-- pidstat -u
- hadoop.hive.cpu_user_rate
- hadoop.hive.cpu_system_rate
-- pidstat -d
- hadoop.hive.disk.read_speed
- hadoop.hive.disk.write_speed
-- pidstat -r
- hadoop.hive.mem_virtual
- hadoop.hive.mem_rss
- hadoop.hive.metastore_total #读配置文件
- hadoop.hive.metastore_alive #通过lsof -i | grep "^($pid='hiveserver'pid)"进行获取
- hadoop.hive.metastore_dead #dead = total-alive
kafka.py(采集方法是使用jolokia/list/mbean的大类
node = Producer
node = Consumer
node = broker
Mbean: kafka.server:type=KafkaServer,name=BrokerState
- kafka.broker.brokerstate [value] #broker状态
Mbean: kafka.server:type=KafkaServer,name=ClusterId
- kafka.broker.clusterid [value] #集群id
Mbean: kafka.server:type=DelayedOperationPurgatory,name=NumDelayedOperations,delayedOperation=Fetch
- kafka.broker.delayfetch [value] #broker延迟的被消费操作数
Mbean: kafka.server:type=DelayedOperationPurgatory,name=NumDelayedOperations,delayedOperation=Produce
- kafka.broker.delayproduce [value] #broker延迟的生产操作数
Mbean: kafka.server:type=DelayedOperationPurgatory,name=NumDelayedOperations,delayedOperation=Heartbeat
- kafka.broker.delayheartbeat [value] #broker心跳书
Mbean: kafka.server:type=DelayedOperationPurgatory,name=NumDelayedOperations,delayedOperation=Topic
- kafka.broker.delaytopic [value] #broker的topic延迟数
Mbean: kafka.server:type=DelayedOperationPurgatory,name=NumDelayedOperations,delayedOperation=Rebalance
- kafka.broker.delayrebalance [value] #broker再平衡数
Mbean: kafka.server:type=ReplicaManager,name=PartitionCount
- kafka.broker.partitioncount [value] #broker partition数
Mbean: kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions
- kafka.broker.underreplicatedpartitions [value] #broker受管理的partition数量
Mbean: kafka.server:type=ReplicaManager,name=IsrExpandsPerSec
- kafka.broker.isrexpandspeed [count] #扩展速度
Mbean: kafka.server:type=ReplicaManager,name=IsrShrinksPerSec
- kafka.broker.isrshrinkspeed [count] #收缩速度
node = topic
Mbean: kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec
- kafka.broker.topic.byteinpersecond [count] # topic的写入字节数(每秒)
Mbean: kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec
- kafka.broker.topic.byteoutpersecond [count] # topic的读取字节数(每秒)
Mbean: kafka.server:type=BrokerTopicMetrics,name=BytesRejectedPerSec
- kafka.broker.topic.byterejectpersecond [count] #topic的拒绝数*每秒)
Mbean: kafka.server:type=BrokerTopicMetrics,name=TotalFetchRequestsPerSec
- kafka.broker.topic.totalfetchrequestpersecond [count] # topic发出的请求数
Mbean: kafka.server:type=BrokerTopicMetrics,name=TotalProduceRequestsPerS ec
- kafka.broker.topic.totalproducerequestpersecond [count] # topic产出的请求数
node = controller
Mbean: kafka.controller:type=KafkaController,name=OfflinePartitionsCount
- kafka.controller.offlinepartitioncount [value] #下线的分区数量
Mbean: kafka.controller:type=KafkaController,name=ActiveControllerCount
- kafka.controller.activecontrollerconut [value] #活跃的controller数量
Mbean: kafka.controller:type=ControllerStats,name=UncleanLeaderElectionsPerSec
- kafka.controller.uncleanLeaderElection [count] #未完成的选举树
Mbean: kafka.controller:type=ControllerStats,name=LeaderElectionRateAndTimeMs
- kafka.controller.leaderelectiontime #主选举时间
impala.py
node = catalogd
- impala.catalogd.tcmalloc.bytes-in-use # catalogd程序使用的内存
- impala.catalogd.tcmalloc.pageheap-free-bytes # page堆中空闲的内存
- impala.catalogd.tcmalloc.pageheap-unmapped-bytes # page堆中未映射的内存
- impala.catalogd.tcmalloc_physical_bytes_reserved # 预留的物理内存
- impala.catalogd.tcmalloc.total-bytes-reserved #总预留内存
- impala.catalogd.statestore-subscriber.heartbeat-interval-time.last #上一次与statestore的心跳时间
- impala.catalogd.statestore-subscriber.heartbeat-interval-time.min #最短的心跳时间
- impala.catalogd.statestore-subscriber.heartbeat-interval-time.max #最长的心跳时间
- impala.catalogd.statestore-subscriber.heartbeat-interval-time.avg #平均的心跳时间
- impala.catalogd.statestore-subscriber.last-recovery-duration #上一次回复的耗时
- impala.catalogd.statestore-subscriber.statestore.client-cache.clients-in-use #正在使用statestore的客户端数量
- impala.catalogd.statestore_subscriber_statestore_client_cache_total_clients #statestore缓存的总客户端数量
node = statestore
- impala.statestore.statestore.live-backends # 存活的statestore数量
- impala.statestore.total-key-size-bytes # 总共的键的所用内存字节数
- impala.statestore.total-topic-size-bytes # 总共的话题所用内存字节数
- impala.statestore.total-value-size-bytes # statestore中全部值和话题的总和
- impala.statestore.subscriber-heartbeat.client-cache.clients-in-use # 正在使用的客户端(catalogd)个数
- impala.statestore.subscriber-heartbeat.client-cache.total-clients # 总客户端(catalogd)个数,
- impala.statestore.tcmalloc.bytes-in-use # statestore所使用的内存
- impala.statestore.tcmalloc.pageheap-free-bytes # statestore中page堆空闲的内存
- impala.statestore.tcmalloc.pageheap-unmapped-bytes # statestore中未映射的内存大小
- impala.statestore.tcmalloc.physical-bytes-reserved # statestore预留的物理内存大小
- impala.statestore.tcmalloc.total-bytes-reserved #statestore的总预留内存大小
- impala.statestore.thread-manager.running-threads #运行的线程个数
- impala.statestore.thread-manager.total-threads-created # 创建的线程总个数
node = impalad
- impala.impalad.hash-table.total-bytes #目前被分配的Hash表大小
- impala.impalad.io-mgr.cached-bytes-read #读取的缓存字节数
- impala.impalad.io-mgr.bytes-written #写入的字节数
- impala.impalad.io-mgr.bytes-read #io阅读的字节数
- impala.impalad.io-mgr.local-bytes-read #本地io阅读的字节数
- impala.impalad.io-mgr.total-bytes # io的总字节数
- impala.impalad.mem_pool_total_bytes # 被所有查询共享的内存池的大小
- impala.impalad.mem_tracker_process_bytes_freed_by_last_gc # 上一次gc释放的内存
- impala.impalad.mem_tracker_process_bytes_over_limit # 上一次超过内存可用阈值的大小
- impala.impalad.num_backends # 与其他impala的后台连接数
- impala.impalad.thrift_server_llama_callback_connections_rate ## thrift_server_llama的链接速率
- impala.impalad.thrift_server_llama_callback_connections_in_use ##活跃的thrift_server_llama回调连接数
//- impala.impalad.resource_requests_released_rate #still not
//- impala.impalad.resource_requests_timedout_rate #still not
//- impala.impalad.resource_requests_rejected_rate #still not
- impala.impalad.tcmalloc_total_bytes_reserved //预留给impalad的内存
- impala.impalad.tcmalloc_physical_bytes_reserved //预留给impalad的物理内存
- impala.impalad.tcmalloc_pageheap_unmapped_bytes //空闲未分配映射给page堆的内存
- impala.impalad.tcmalloc_pageheap_free_bytes //空闲page堆的内存
- impala.impalad.tcmalloc_bytes_in_use //正在使用的内存
- impala.impalad.statestore_subscriber_statestore_client_cache_total_clients # 使用statestore缓存的客户端总数
- impala.impalad.statestore_subscriber_statestore_client_cache_clients_in_use #使用statestore缓存的活跃客户端数量
- impala.impalad.statestore_subscriber_last_recovery_duration # statestore订阅的上次复原耗时
- impala.impalad.statestore_subscriber_heartbeat_interval_time_stddev #statestore订阅的心跳时间标准差(平均值)
- impala.impalad.statestore_subscriber_heartbeat_interval_time_rate #statestore订阅的心跳时间速率
- impala.impalad.statestore_subscriber_heartbeat_interval_time_min #statestore订阅的心跳时间最小值
- impala.impalad.statestore_subscriber_heartbeat_interval_time_mean #statestore订阅的心跳时间平均值
- impala.impalad.statestore_subscriber_heartbeat_interval_time_max #statestore订阅的心跳时间最大值
- impala.impalad.statestore_subscriber_heartbeat_interval_time_last #上一次statestore订阅的心跳时间
- impala.impalad.scan_ranges_rate #进程生存周期中的查询的速率
- impala.impalad.scan_ranges_num_missing_volume_id_rate #进程生存周期中的没有元数据
- impala.impalad.num_queries_rate #进程生存周期中的中查询速率
- impala.impalad.num_queries_expired_rate #过期查询的速率
- impala.impalad.num_sessions_expired_rate #过期的会话速率
- impala.impalad.thrift_server_backend_connections_rate #后端thrift_server的链接速录
- impala.impalad.thrift_server_backend_connections_in_use #后端thrift_server的活跃连接数
//- impala.impalad.unexpected_exits_rate #still not
- impala.impalad.thrift_server_hiveserver2_frontend_connections_in_use #Hiveserver2的活跃连接数
- impala.impalad.thrift_server_hiveserver2_frontend_connections_rate #Hiveserver2的链接速率
- impala.impalad.impala-server.ddl-durations-ms.25th #impalad服务器耗时的前25%的耗时
- impala.impalad.impala-server.ddl-durations-ms.50th #impalad服务器耗时的前50%的耗时
- impala.impalad.impala-server.ddl-durations-ms.75th #impalad服务器耗时的前75%的耗时
- impala.impalad.impala-server.ddl-durations-ms.90th #impalad服务器耗时的前90%的耗时
- impala.impalad.impala-server.ddl-durations-ms.95th #impalad服务器耗时的前95%的耗时
- impala.impalad.impala-server.ddl-durations-ms.99.9th #impalad服务器耗时的前99.9%的耗时
- impala.impalad.impala-server.ddl-durations-ms.count #impalad服务器耗时的前25%的耗时
Hbase:
Master:
Hadoop:service=HBase,name=Master,sub=Server
tag.liveRegionServers
tag.deadRegionServers
averageLoad
numRegionServers
numDeadRegionServers
RegionServer:
Hadoop:service=HBase,name=RegionServer,sub=Server
totalRequestCount
blockCacheFreeSize #
readRequestCount #总读次数
writeRequestCount #总写次数
flushedCellsCount #
flushedCellsSize #flush到磁盘大小
flushQueueLength #
blockedRequestCount #因memstore大于阈值而引发flush的次数
slowGetCount #请求完成时间超过1000ms的次数
storeCount #该Region Server管理的store个数
mutationsWithoutWALCount
mutationsWithoutWALSize
blockCacheHitCount
blockCacheMissCount
Hadoop:service=HBase,name=RegionServer,sub=IPC:
numActiveHandler #RPC_handler的个数
Hadoop:service=HBase,name=RegionServer,sub=WAL:
slowAppendCount
SyncTime_num_ops
SyncTime_max
SyncTime_mean
AppendTime_num_ops
AppendTime_max
AppendTime_mean
HDFS:
NameNode:
FSSystemState
VolumeFailure total
NumStaleDataNodes
NumStaleStorage
FSNameSystem
CorruptBlocks
CapacityRemain
NumLiveDataNode
NumDeadDataNode
Snapshot
NameNodeInfo(mbean:Hadoop:service=NameNode,name=NameNodeInfo)
Livenode
DataNode:
DataNodeActivity(mbean:Hadoop:service=DataNode,name=DataNodeActivity-$hostname)
BlockVerificationFailures
BlockReportsAvgTime
BlockReportsNumOps
HeartbeatsAvgTime
HeartbeatsNumOps
DatanodeNetworkErrors
VolumeFailures
ReplaceBlockOpNumOps
ReplaceBlockOpAvgTime
DataNodeInfo(mbean:Hadoop:service=DataNode,name=DataNodeInfo)
DatanodeNetworkCounts
---------------------------
(yarn)MapReduce
- mapreduce.py
```
# parse the configuration
node = ResoucreManager
hadoop.mapreduce.appsSubmitted int The number of applications submitted
hadoop.mapreduce.appsCompleted int The number of applications completed
hadoop.mapreduce.appsPending int The number of applications pending
hadoop.mapreduce.appsRunning int The number of applications running
hadoop.mapreduce.appsFailed int The number of applications failed
hadoop.mapreduce.appsKilled int The number of applications killed
hadoop.mapreduce.reservedMB long The amount of memory reserved in MB
hadoop.mapreduce.availableMB long The amount of memory available in MB
hadoop.mapreduce.allocatedMB long The amount of memory allocated in MB
hadoop.mapreduce.totalMB long The amount of total memory in MB
hadoop.mapreduce.reservedVirtualCores long The number of reserved virtual cores
hadoop.mapreduce.availableVirtualCores long The number of available virtual cores
hadoop.mapreduce.allocatedVirtualCores long The number of allocated virtual cores
hadoop.mapreduce.totalVirtualCores long The total number of virtual cores
hadoop.mapreduce.containersAllocated int The number of containers allocated
hadoop.mapreduce.containersReserve int The number of containers reserved
hadoop.mapreduce.containersPending int The number of containers pending
hadoop.mapreduce.totalNodes int The total number of nodes
hadoop.mapreduce.activeNodes int The number of active nodes
hadoop.mapreduce.lostNodes int The number of lost nodes
hadoop.mapreduce.unhealthyodes int The number of unhealthy nodes
hadoop.mapreduce.decommissionedNodes int The number of nodes decommissioned
hadoop.mapreduce.rebootedNodes int The number of nodes rebooted
```
- spark.py
```
spark.application.counts int attached tag: stauts[completed|running
spark.application.duration int(ms) attached tag: status[completed|runnning], appId,
---running applications only
spark.application.taskComplRate float attached tag: appId, hint: port 4040 ,real time data
spark.application.activetask int attached tag: appId, jobId
spark.application.failedtask int attached tag: appId, jobId
spark.application.completedtask int attached tag: appId, jobId
---completed application only
spark.executor.gctime float attached tag: appId, executorId
spark.executor.duration float attached tag: appId, executorId
```