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Duality

Given a function f: R% — R*, define its conjugate f* : R? - R as
f(y) = max x"y — f(x)

a.k.a. Legendre transform or Fenchel conjugate function. (Note RT := R U {+o0})

f(x)

Figure: maximum gap between
linear function x "y and f(x).

figure by Boyd & Vandenberghe
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Properties

> f* is always convex, even if f is not.
Proof: point-wise maximum of convex (affine) functions iny.
» Fenchel's inequality: for any x,y,

fx)+ fy) >x'y

» Hence conjugate of conjugate f** satisfies f** < f.
> If fis closed and convex, then f** = f.
» If fis closed and convex, then for any x,y,

y €0f(x) & x€df(y)
e fx)+f(y)=x"y

» Separable functions: If f(u,v) = fi(u) + f2(v), then
fH(w,z) = fi(w) + f3(2)
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Examples

» Recall: Indicator function of a set C C R% is

Lo (x) = {0 x € C,

+o0o otherwise.
If f(x) = tc(x), then its conjugate is

* — ma; T
f(y) max y ' x

called the support function of C.
» Norm: if f(x) = ||x]|, then its conjugate is
) =tz <y (y)

(i.e. indicator of the dual norm ball) Note: The dual norm of ||.|| is defined as
[yl := maxx<1 y'x. Eg. [ ¢ |l]co.
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Examples, cont

Generalized linear models
min f(Ax) + g(x)
x€R4

reformulate
min  f(w)+g(x) st. w=Ax
xER4, weRn

Lagrange dual function

L(w)i= _min (W) +g(x) +u (w— Ax)

=— [ (—u) —g"(ATu)
Dual problem
max [ﬁ(u) =—f"(—u) - g*(ATu)].

ucR”
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Examples, cont

Lasso
min 1]|Ax — b||> + A|[x|1
x€R?

is an example, for f(w) := Z||w — b||?> and g(x) := A||x|)s.

Can compute f*(u) = 3||b||* — 3||b — u]|?
and g% (V) = t{g|a) <13 (V/A),

so that the dual problem is

max — f*(—u) — g*(A ).

ueR™

& max —3[b*+ 3[b+ul? st [|ATu/N|e < 1.
u n

& min [bt+ul® st [[ATufe <A
ucR™
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Why Duality?
Similarly for least squares, ridge regression, SVM, logistic regression, elastic net, etc.

Advantages:

» Duality gap gives a certificate of current optimization quality

f(AX) +g(x)
> min, e f(AX) + g(x)
>

maxyers —f*(—u) - g*(A"u)
> —f*(~1) - g"(ATu)

for any x,u.

» Stopping criterion

» Dual can in some cases be easier to solve

EPFL Optimization for Machine Learning CS-439

8/18



Chapter X.2

Zero-Order Optimization
< Derivative-Free
< Blackbox
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Look mom no gradients!

Can we optimize min,ga f(x) if without access to gradients?

meet the newest fanciest optimization algorithm,...
Random search

pick a random direction d; € R?

v := argmin f(x; + ydy) (line-search)
vER

Xi41 = X¢ + ydy
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Convergence rate for derivative-free random search
Converges same as gradient descent - up to a slow-down factor d.

Proof. Assume that f is a L-smooth convex, differentiable function. For any ~, by
smoothness, we have:

2
Flose ) < Fx) + lde, V7)) + L P

Minimizing the upper bound, there is a step size 7 for which

d
a3 < () = (7t V)

The step size we actually took (based on f directly) can only be better:
fxe+yde) < flxe+7dy) -
Taking expectations, and using the Lemma E,(r'g)? = 1 Lilg||? for r ~ sphere C R? :

E[f(xi + 7)< Blf ()] — 2BV ()]
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Convergence rate for derivative-free random search

Same as what we obtained for gradient descent,
now with an extra factor of d. d can be huge!!!

Can do the same for different function classes, as before

» For convex functions, we get a rate of O(dL/e) .

» For strongly convex, we get O(dLlog(1/¢)) .

Always d times the complexity of gradient descent on the function class.

credits to Moritz Hardt
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Applications for derivative-free random search

Applications

» competitive method for Reinforcement learning
» memory and communication advantages: never need to store a gradient

» hyperparameter optimization, and other difficult e.g. discrete optimization
problems

» can be improved to learn a second-order model of the function, during
optimization [Stich PhD thesis, 2014]
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Reinforcement learning

st+1 = f(st,at, et) .
where s; is the state of the system, a; is the control action, and e; is some random
noise. We assume that f is fixed, but unknown.

We search for a control ‘policy’
a;:=m(ag,...,a,-1,80,...,5¢) -

which takes a trajectory of the dynamical system and outputs a new control action.
Want to maximize overall reward

N
max Fe, [Z Ry(sy, at)]
t=0
s.t. St11 = f(sta at, et)
(so given)

Examples: Simulations, Games (e.g. Atari), Alpha Go
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Chapter X.3
Adaptive & other SGD Methods
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Adagrad
Adagrad is an adaptive variant of SGD

pick a stochastic gradient g;
¢

update [Gy]; := > ([gs]i)? Vi
s=0

[xtv1]i := [xe)i — ‘[gt]i Vi

(standard choice of g; := V f;(x;) for sum-structured objective functions f =3, f;)

» chooses an adaptive, coordinate-wise learning rate
P strong performance in practice
» Variants: Adadelta, Adam, RMSprop
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Adam

Adam is a momentum variant of Adagrad

pick a stochastic gradient g

my = fimy_1 + (1 — B1)g: (momentum term)
[vili := Ba[vi_1]i + (1 — B2)([gs)i)* Vi (2nd-order statistics)
[my]; Vi

[xt+1]i == [xe]i — v

> faster forgetting of older weights
» momentum from previous gradients (see acceleration, lecture 6)
» (simplified version, without correction for initialization of mg,vg)

P strong performance in practice, e.g. for self-attention networks
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SignSGD

Only use the sign (one bit) of each gradient entry:
SignSGD is a communication efficient variant of SGD.

pick a stochastic gradient g;

[xt+1]i = [xei — e sign((gt)s)
(with possible rescaling of ~; with [|g||;)

» communication efficient for distributed training

P convergence issues
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