-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
248 lines (210 loc) · 7.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import os
import sys
import random
import json
import numpy as np
import torch
from typing import Iterable, Optional
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import (DataLoader, BatchSampler, RandomSampler,
SequentialSampler, DistributedSampler)
import util
from models import build_model
from datasets import build_dataset
from loss import build_criterion
from common.error import NoGradientError
from common.logger import Logger, MetricLogger, SmoothedValue
from common.functions import *
from common.nest import NestedTensor
from configs import dynamic_load
import cv2
DEV = torch.device('cuda' if torch.is_available() else 'cpu')
def train(
epoch: int, loader: Iterable, model: torch.nn.Module,
criterion: torch.nn.Module, optimizer: torch.optim.Optimizer,
max_norm=0., print_freq=10., tb_logger=None
):
model.train()
criterion.train()
logger = MetricLogger(delimiter=' ')
logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = f'Epoch: [{epoch}]'
for batched_data in logger.log_every(loader, print_freq, header):
bitmaps, masks, assignments, images = batched_data.to(DEV)
bitmaps0, bitmaps1 = torch.chunk(bitmaps, 2, dim=0)
masks0, masks1 = torch.chunk(masks, 2, dim=0)
images0, images1 = np.split(images, 2)
samples0 = NestedTensor(bitmaps0, masks0)
samples1 = NestedTensor(bitmaps1, masks1)
matches = assignments_to_matches(assignments)
targets = {
'assignments': assignments,
'matches': matches,
'images0': images0,
'images1': images1,
}
if matches.shape[0] <= 0:
print('Skip Non-enough matches [<=0].')
continue
preds = model(samples0, samples1, matches)
try:
loss_dict = criterion(preds, targets)
loss = loss_dict['loss']
optimizer.zero_grad()
loss.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(
model.parameters(), max_norm
)
optimizer.step()
except NoGradientError:
print('Got No Gradient Error')
sys.exit(1)
loss_dict_reduced = util.reduce_dict(loss_dict)
loss_dict_reduced_item = {
k: v.item() for k, v in loss_dict_reduced.items()
}
logger.update(**loss_dict_reduced_item)
logger.update(lr=optimizer.param_groups[0]['lr'])
if tb_logger is not None:
if util.is_main_process():
tb_logger.add_scalers(loss_dict_reduced, prefix='train')
logger.synchronize_between_processes()
print('Average stats:', logger)
return {k: meter.global_avg for k, meter in logger.meters.items()}
@torch.no_grad()
def test(
loader: Iterable, model: torch.nn.Module,
metrics, print_freq=10., tb_logger=None
):
model.eval()
logger = MetricLogger(delimiter=' ')
header = 'Test'
for batched_data in logger.log_every(loader, print_freq, header):
bitmaps, masks, assignments, images = batched_data.to(DEV)
bitmaps0, bitmaps1 = torch.chunk(bitmaps, 2, dim=0)
masks0, masks1 = torch.chunk(masks, 2, dim=0)
images0, images1 = np.split(images, 2)
samples0 = NestedTensor(bitmaps0, masks0)
samples1 = NestedTensor(bitmaps1, masks1)
matches = assignments_to_matches(assignments)
targets = {
'assignments': assignments,
'matches': matches,
'images0': images0,
'images1': images1,
}
if matches.shape[0] == 0:
print('Found No matches in batch, continue.')
continue
preds = model(samples0, samples1)
stats = metrics(preds, targets)
def main(args):
util.init_distributed_mode(args)
seed = args.seed + util.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
print('Seed used:', seed)
model: torch.nn.Module = build_model(args)
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Trainable parameters:', n_params)
model = model.to(DEV)
criterion, metrics = build_criterion(args)
criterion = criterion.to(DEV)
model_without_ddp = model
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = DistributedDataParallel(model, device_ids={args.gpu})
model_without_ddp = model.module
optimizer = torch.optim.AdamW(
model_without_ddp.parameters(),
lr=args.lr, weight_decay=args.weight_decay
)
scheduler = torch.optim.lr_schedular.CosineAnnealingLR(
optimizer, T_max=args.n_epochs, eta_min=1e-6
)
train_dataset, test_dataset = build_dataset(args.data_name, args)
if args.distributed:
train_sampler = DistributedSampler(train_dataset)
test_sampler = DistributedSampler(test_dataset, shuffle=False)
else:
train_sampler = RandomSampler(train_dataset)
test_sampler = SequentialSampler(test_dataset)
batch_train_sampler = BatchSampler(
train_sampler, args.batch_size, drop_last=True
)
dataloader_kwargs = {
'collate_fn': train_dataset.collate_fn,
'pin_memory': True,
'num_workers': 4,
}
train_loader = DataLoader(
train_dataset,
batch_sampler=batch_train_sampler,
**dataloader_kwargs
)
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
sampler=test_sampler,
drop_last=True,
**dataloader_kwargs
)
if args.load is not None:
state_dict = torch.load(args.load, map_location='cpu')
model_without_ddp.load_state_dict(state_dict['model'])
save_name = f'{args.backbone_name}-{args.matching_name}'
save_name += f'_dim{args.d_coarse_model}-{args.d_fine_model}'
save_name += f'_depth{args.n_coarse_model}-{args.d_fine_model}'
save_path = os.path.join(args.save_path, save_name)
os.makedirs(save_path, exist_ok=True)
if util.is_main_process():
tensorboard_logger = Logger(save_path)
else:
tensorboard_logger = None
print('Start Training...')
for epoch in range(args.n_epochs):
epoch = epoch + args.epoch_offset
if args.distributed:
train_sampler.set_epoch(epoch)
train_stats = train(
epoch,
train_loader,
model,
criterion,
optimizer,
max_norm=args.clip_max_norm,
print_freq = args.log_interval,
tb_logger=tensorboard_logger
)
scheduler.step()
if epoch % args.save_interval == 0 or epoch == args.n_epochs - 1:
if util.is_main_process():
torch.save({
'model': model_without_ddp.state_dict()
}, f'{save_path}/model-epoch{epoch}.pth')
test_stats = {}
log_stats = {
'epoch': epoch,
'n_params': n_params,
'data_name': args.data_name,
**{f'train_{k}':v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
}
with open(f'{save_path}/train.log', 'a') as f:
f.write(json.dumps(log_stats) + '\n')
print('Finished!')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config_name', type=str,
default='imcnet_config')
global_cfgs = parser.parse_args()
args = dynamic_load(global_cfgs.config_name)
prm_str = 'Arguments:\n' + '\n'.join(
['{} {}'.format(k.upper(), v) for k, v in vars(args).items()]
)
print(prm_str + '\n')
print('=='*40 + '\n')
main(args)