Skip to content

Latest commit

 

History

History
80 lines (64 loc) · 2.64 KB

README.md

File metadata and controls

80 lines (64 loc) · 2.64 KB

Meta-sequential prediction (MSP)

image

This repository contains the code for the NeurIPS2022 paper: Unsupervised Learning of Equivariant Structure on Sequences. A simple encoder-decoder model trained with meta-sequential prediction captures the hidden disentangled structure underlying the datasets.

[arXiv] [OpenReview]

Implementation of MSP and simultaneous block diagonalization (SBD)

  • SeqAELSTSQ in ./models/seqae.py is the implementation of meta-sequential prediction.
  • tracenorm_of_normalized_laplacian in ./utils/laplacian.py is used to calculate the block diagonalization loss in our paper.

Setup

Prerequisite

python3.7, CUDA11.2, cuDNN

Please install additional python libraries by:

pip install -r requirements.txt

Download datasets

Download the compressed dataset files from the following link:

https://drive.google.com/drive/folders/1_uXjx06U48to9OSyGY1ezqipAbbuT0vq?usp=sharing

The following is an example script to download and decompress the files:

# If gdown is not installed:
pip install gdown

export DATADIR_ROOT=/tmp/path/to/datadir/
cd /tmp
gdown --folder https://drive.google.com/drive/folders/1_uXjx06U48to9OSyGY1ezqipAbbuT0vq?usp=sharing 
mv datasets/* ${DATADIR_ROOT}; rm datasets -r 
cd -
tar xzf  ${DATADIR_ROOT}/MNIST.tar.gz -C $DATADIR_ROOT
tar xzf  ${DATADIR_ROOT}/3dshapes.tar.gz -C $DATADIR_ROOT
tar xzf  ${DATADIR_ROOT}/smallNORB.tar.gz -C $DATADIR_ROOT

Training with MSP

  1. Select dataset on which you want to train the model:
# Sequential MNIST
export CONFIG=configs/mnist/lstsq/lstsq.yml
# Sequential MNIST-bg with digit 4
export CONFIG=configs/mnist_bg/lstsq/lstsq.yml
# 3DShapes
export CONFIG=configs/3dshapes/lstsq/lstsq.yml
# SmallNORB
export CONFIG=configs/smallNORB/lstsq/lstsq.yml
# Accelerated sequential MNIST
export CONFIG=configs/mnist_accl/lstsq/holstsq.yml
  1. Run:
export LOGDIR=/tmp/path/to/logdir
export DATADIR_ROOT=/tmp/path/to/datadir
python run.py --config_path=$CONFIG --log_dir=$LOGDIR --attr train_data.args.root=$DATADIR_ROOT

Training all the methods we tested in our NeurIPS paper

export LOGDIR=/tmp/path/to/logdir
export DATADIR_ROOT=/tmp/path/to/datadir
bash training_allmodels.sh $LOGDIR $DATADIR_ROOT

Evaluations

  • Generated images: gen_images.ipynb
  • Equivariance errors: equivariance_error.ipynb
  • Prediction errors: extrp.ipynb
  • Simultaneous block diagoanlization: block_diagonalization.ipynb