forked from charlesq34/pointnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpointnet_part_seg.py
160 lines (122 loc) · 8.15 KB
/
pointnet_part_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import tensorflow as tf
import numpy as np
import math
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(BASE_DIR))
sys.path.append(os.path.join(BASE_DIR, '../utils'))
import tf_util
def get_transform_K(inputs, is_training, bn_decay=None, K = 3):
""" Transform Net, input is BxNx1xK gray image
Return:
Transformation matrix of size KxK """
batch_size = inputs.get_shape()[0].value
num_point = inputs.get_shape()[1].value
net = tf_util.conv2d(inputs, 256, [1,1], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay)
net = tf_util.conv2d(net, 1024, [1,1], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='tconv2', bn_decay=bn_decay)
net = tf_util.max_pool2d(net, [num_point,1], padding='VALID', scope='tmaxpool')
net = tf.reshape(net, [batch_size, -1])
net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay)
net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay)
with tf.variable_scope('transform_feat') as sc:
weights = tf.get_variable('weights', [256, K*K], initializer=tf.constant_initializer(0.0), dtype=tf.float32)
biases = tf.get_variable('biases', [K*K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) + tf.constant(np.eye(K).flatten(), dtype=tf.float32)
transform = tf.matmul(net, weights)
transform = tf.nn.bias_add(transform, biases)
#transform = tf_util.fully_connected(net, 3*K, activation_fn=None, scope='tfc3')
transform = tf.reshape(transform, [batch_size, K, K])
return transform
def get_transform(point_cloud, is_training, bn_decay=None, K = 3):
""" Transform Net, input is BxNx3 gray image
Return:
Transformation matrix of size 3xK """
batch_size = point_cloud.get_shape()[0].value
num_point = point_cloud.get_shape()[1].value
input_image = tf.expand_dims(point_cloud, -1)
net = tf_util.conv2d(input_image, 64, [1,3], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay)
net = tf_util.conv2d(net, 128, [1,1], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='tconv3', bn_decay=bn_decay)
net = tf_util.conv2d(net, 1024, [1,1], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='tconv4', bn_decay=bn_decay)
net = tf_util.max_pool2d(net, [num_point,1], padding='VALID', scope='tmaxpool')
net = tf.reshape(net, [batch_size, -1])
net = tf_util.fully_connected(net, 128, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay)
net = tf_util.fully_connected(net, 128, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay)
with tf.variable_scope('transform_XYZ') as sc:
assert(K==3)
weights = tf.get_variable('weights', [128, 3*K], initializer=tf.constant_initializer(0.0), dtype=tf.float32)
biases = tf.get_variable('biases', [3*K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) + tf.constant([1,0,0,0,1,0,0,0,1], dtype=tf.float32)
transform = tf.matmul(net, weights)
transform = tf.nn.bias_add(transform, biases)
#transform = tf_util.fully_connected(net, 3*K, activation_fn=None, scope='tfc3')
transform = tf.reshape(transform, [batch_size, 3, K])
return transform
def get_model(point_cloud, input_label, is_training, cat_num, part_num, \
batch_size, num_point, weight_decay, bn_decay=None):
""" ConvNet baseline, input is BxNx3 gray image """
end_points = {}
with tf.variable_scope('transform_net1') as sc:
K = 3
transform = get_transform(point_cloud, is_training, bn_decay, K = 3)
point_cloud_transformed = tf.matmul(point_cloud, transform)
input_image = tf.expand_dims(point_cloud_transformed, -1)
out1 = tf_util.conv2d(input_image, 64, [1,K], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='conv1', bn_decay=bn_decay)
out2 = tf_util.conv2d(out1, 128, [1,1], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='conv2', bn_decay=bn_decay)
out3 = tf_util.conv2d(out2, 128, [1,1], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='conv3', bn_decay=bn_decay)
with tf.variable_scope('transform_net2') as sc:
K = 128
transform = get_transform_K(out3, is_training, bn_decay, K)
end_points['transform'] = transform
squeezed_out3 = tf.reshape(out3, [batch_size, num_point, 128])
net_transformed = tf.matmul(squeezed_out3, transform)
net_transformed = tf.expand_dims(net_transformed, [2])
out4 = tf_util.conv2d(net_transformed, 512, [1,1], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='conv4', bn_decay=bn_decay)
out5 = tf_util.conv2d(out4, 2048, [1,1], padding='VALID', stride=[1,1],
bn=True, is_training=is_training, scope='conv5', bn_decay=bn_decay)
out_max = tf_util.max_pool2d(out5, [num_point,1], padding='VALID', scope='maxpool')
# classification network
net = tf.reshape(out_max, [batch_size, -1])
net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='cla/fc1', bn_decay=bn_decay)
net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='cla/fc2', bn_decay=bn_decay)
net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='cla/dp1')
net = tf_util.fully_connected(net, cat_num, activation_fn=None, scope='cla/fc3')
# segmentation network
one_hot_label_expand = tf.reshape(input_label, [batch_size, 1, 1, cat_num])
out_max = tf.concat(axis=3, values=[out_max, one_hot_label_expand])
expand = tf.tile(out_max, [1, num_point, 1, 1])
concat = tf.concat(axis=3, values=[expand, out1, out2, out3, out4, out5])
net2 = tf_util.conv2d(concat, 256, [1,1], padding='VALID', stride=[1,1], bn_decay=bn_decay,
bn=True, is_training=is_training, scope='seg/conv1', weight_decay=weight_decay)
net2 = tf_util.dropout(net2, keep_prob=0.8, is_training=is_training, scope='seg/dp1')
net2 = tf_util.conv2d(net2, 256, [1,1], padding='VALID', stride=[1,1], bn_decay=bn_decay,
bn=True, is_training=is_training, scope='seg/conv2', weight_decay=weight_decay)
net2 = tf_util.dropout(net2, keep_prob=0.8, is_training=is_training, scope='seg/dp2')
net2 = tf_util.conv2d(net2, 128, [1,1], padding='VALID', stride=[1,1], bn_decay=bn_decay,
bn=True, is_training=is_training, scope='seg/conv3', weight_decay=weight_decay)
net2 = tf_util.conv2d(net2, part_num, [1,1], padding='VALID', stride=[1,1], activation_fn=None,
bn=False, scope='seg/conv4', weight_decay=weight_decay)
net2 = tf.reshape(net2, [batch_size, num_point, part_num])
return net, net2, end_points
def get_loss(l_pred, seg_pred, label, seg, weight, end_points):
per_instance_label_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=l_pred, labels=label)
label_loss = tf.reduce_mean(per_instance_label_loss)
# size of seg_pred is batch_size x point_num x part_cat_num
# size of seg is batch_size x point_num
per_instance_seg_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=seg_pred, labels=seg), axis=1)
seg_loss = tf.reduce_mean(per_instance_seg_loss)
per_instance_seg_pred_res = tf.argmax(seg_pred, 2)
# Enforce the transformation as orthogonal matrix
transform = end_points['transform'] # BxKxK
K = transform.get_shape()[1].value
mat_diff = tf.matmul(transform, tf.transpose(transform, perm=[0,2,1])) - tf.constant(np.eye(K), dtype=tf.float32)
mat_diff_loss = tf.nn.l2_loss(mat_diff)
total_loss = weight * seg_loss + (1 - weight) * label_loss + mat_diff_loss * 1e-3
return total_loss, label_loss, per_instance_label_loss, seg_loss, per_instance_seg_loss, per_instance_seg_pred_res