-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
62 lines (52 loc) · 2.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Importing all the libraries
from keras.applications.mobilenet import preprocess_input
from keras.preprocessing.image import img_to_array
from keras.models import load_model
import numpy as np
import cv2
# Camera.py file from where camera will be initialized
from Camera import VideoCamera
# Including the prototxt and caffemodel from face_detector to detect face from the frame
open_cv_deploy = "C:\\Users\Ankit Saini\PycharmProjects\Mask and Non-Mask Detector-20200601T123150Z-001\Mask and Non-Mask Detector\Face_detector\Open-CV_deploy.prototxt"
W = "C:\\Users\Ankit Saini\PycharmProjects\Mask and Non-Mask Detector-20200601T123150Z-001\Mask and Non-Mask Detector\Face_detector\Model.caffemodel"
net = cv2.dnn.readNet(open_cv_deploy, W)
model = load_model("C:\\Users\Ankit Saini\PycharmProjects\Mask and Non-Mask Detector-20200601T123150Z-001\Mask and Non-Mask Detector\mask.model")
# Function which takes camera frame and predicts
def gen(camera):
while True:
img = camera.get_frame()
img = cv2.flip(img, 1)
(h, w) = img.shape[:2]
blob = cv2.dnn.blobFromImage(img, 1.0, (300, 300),
(104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
# Setting the confidence to greater than 0.4
if confidence > 0.4:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# Preprocessing the live feed frame
face = img[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# Predicting the frame from the loaded model
(mask, withoutMask) = model.predict(face)[0]
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
cv2.putText(img, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
cv2.rectangle(img, (startX, startY), (endX, endY), color, 10)
cv2.imshow("Frame", img)
interrupt = cv2.waitKey(10)
if interrupt & 0xFF == 27:
break
# Calling the above function
gen(VideoCamera())