forked from gkamradt/LLMTest_NeedleInAHaystack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLLMNeedleHaystackTester.py
456 lines (382 loc) · 21.8 KB
/
LLMNeedleHaystackTester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
from dotenv import load_dotenv
import os
import tiktoken
import glob
import json
from langchain.evaluation import load_evaluator
from langchain.chat_models import ChatOpenAI
from anthropic import AsyncAnthropic, Anthropic
from dotenv import load_dotenv
import numpy as np
from openai import AsyncOpenAI
import asyncio
from asyncio import Semaphore
from datetime import datetime, timezone
import time
load_dotenv()
class LLMNeedleHaystackTester:
"""
This class is used to test the LLM Needle Haystack.
"""
def __init__(self,
needle="\nThe best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.\n",
haystack_dir="PaulGrahamEssays",
retrieval_question="What is the best thing to do in San Francisco?",
results_version = 1,
context_lengths_min = 1000,
context_lengths_max = 200000,
context_lengths_num_intervals = 35,
context_lengths = None,
document_depth_percent_min = 0,
document_depth_percent_max = 100,
document_depth_percent_intervals = 35,
document_depth_percents = None,
document_depth_percent_interval_type = "linear",
model_provider = "OpenAI",
openai_api_key=None,
anthropic_api_key = None,
model_name='gpt-4-1106-preview',
num_concurrent_requests = 1,
save_results = True,
save_contexts = True,
final_context_length_buffer = 200,
seconds_to_sleep_between_completions = None,
print_ongoing_status = True):
"""
:param needle: The needle to be found in the haystack. Default is None.
:param haystack_dir: The directory of text files to use as background context (or a haystack) in which the needle is to be found. Default is Paul Graham Essays.
:param retrieval_question: The question which with to prompt the model to do the retrieval.
:param results_version: In case you would like to try the same combination of model, context length, and depth % multiple times, change the results version other than 1
:param num_concurrent_requests: Due to volume, this object is set up to run concurrent requests, default = 1. Be careful of rate limits.
:param save_results: Whether or not you would like to save your contexts to file. Warning: These will get long! Default = True
:param save_contexts: Whether or not you would like to save your contexts to file. Warning: These will get long! Default is True.
:param final_context_length_buffer: The amount of cushion you'd like to leave off the input context to allow for the output context. Default 200 tokens
:param context_lengths_min: The minimum length of the context. Default is 1000.
:param context_lengths_max: The maximum length of the context. Default is 200000.
:param context_lengths_num_intervals: The number of intervals for the context length. Default is 35.
:param context_lengths: The lengths of the context. Default is None.
:param document_depth_percent_min: The minimum depth percent of the document. Default is 0.
:param document_depth_percent_max: The maximum depth percent of the document. Default is 100.
:param document_depth_percent_intervals: The number of intervals for the document depth percent. Default is 35.
:param document_depth_percents: The depth percentages of the document. Default is None.
:param document_depth_percent_interval_type: The type of interval for the document depth percent. Must be either 'linear' or 'sigmoid'. Default is 'linear'.
:param model_provider: The provider of the model. Must be either 'OpenAI' or 'Anthropic'. Default is 'OpenAI'.
:param openai_api_key: The API key for OpenAI. Default is None.
:param anthropic_api_key: The API key for Anthropic. Default is None.
:param model_name: The name of the model. Default is 'gpt-4-1106-preview'.
:param seconds_to_sleep_between_completions: The number of seconds to sleep between completions. Default is None.
:param print_ongoing_status: Whether or not to print the ongoing status. Default is True.
"""
if not needle or not haystack_dir or not retrieval_question:
raise ValueError("Needle, haystack, and retrieval_question must be provided.")
self.needle = needle
self.haystack_dir = haystack_dir
self.retrieval_question = retrieval_question
self.results_version = results_version
self.num_concurrent_requests = num_concurrent_requests
self.save_results = save_results
self.final_context_length_buffer = final_context_length_buffer
self.save_contexts = save_contexts
self.seconds_to_sleep_between_completions = seconds_to_sleep_between_completions
self.print_ongoing_status = print_ongoing_status
self.model_provider = model_provider
self.testing_results = []
if context_lengths is None:
if context_lengths_min is None or context_lengths_max is None or context_lengths_num_intervals is None:
raise ValueError("Either context_lengths_min, context_lengths_max, context_lengths_intervals need to be filled out OR the context_lengths_list needs to be supplied.")
else:
self.context_lengths = np.round(np.linspace(context_lengths_min, context_lengths_max, num=context_lengths_num_intervals, endpoint=True)).astype(int)
else:
self.context_lengths = context_lengths
if document_depth_percents is None:
if document_depth_percent_min is None or document_depth_percent_max is None or document_depth_percent_intervals is None:
raise ValueError("Either document_depth_percent_min, document_depth_percent_max, document_depth_percent_intervals need to be filled out OR the document_depth_percents needs to be supplied.")
else:
if document_depth_percent_interval_type == 'linear':
self.document_depth_percents = np.round(np.linspace(document_depth_percent_min, document_depth_percent_max, num=document_depth_percent_intervals, endpoint=True)).astype(int)
elif document_depth_percent_interval_type == 'sigmoid':
self.document_depth_percents = [self.logistic(x) for x in np.linspace(document_depth_percent_min, document_depth_percent_max, document_depth_percent_intervals)]
else:
self.document_depth_percents = document_depth_percents
if document_depth_percent_interval_type not in [None, "linear", "sigmoid"]:
raise ValueError("document_depth_percent_interval_type must be either None, 'linear' or 'sigmoid'. If you'd like your own distribution give a list of ints in via document_depth_percent_intervals")
if model_provider not in ["OpenAI", "Anthropic"]:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
if model_provider == "Anthropic" and "claude" not in model_name:
raise ValueError("If the model provider is 'Anthropic', the model name must include 'claude'. See https://docs.anthropic.com/claude/reference/selecting-a-model for more details on Anthropic models")
self.openai_api_key = openai_api_key or os.getenv('OPENAI_API_KEY')
self.model_name = model_name
if not self.openai_api_key and not os.getenv('OPENAI_API_KEY'):
raise ValueError("Either openai_api_key must be supplied with init, or OPENAI_API_KEY must be in env. Used for evaluation model")
else:
self.openai_api_key = openai_api_key or os.getenv('OPENAI_API_KEY')
self.anthropic_api_key = anthropic_api_key or os.getenv('ANTHROPIC_API_KEY')
if self.model_provider == "Anthropic":
if not self.anthropic_api_key and not os.getenv('ANTHROPIC_API_KEY'):
raise ValueError("Either anthropic_api_key must be supplied with init, or ANTHROPIC_API_KEY must be in env.")
else:
self.anthropic_api_key = anthropic_api_key or os.getenv('ANTHROPIC_API_KEY')
if not self.model_name:
raise ValueError("model_name must be provided.")
if model_provider == "OpenAI":
self.model_to_test = AsyncOpenAI(api_key=self.openai_api_key)
self.enc = tiktoken.encoding_for_model(self.model_name)
elif model_provider == "Anthropic":
self.model_to_test = AsyncAnthropic(api_key=self.anthropic_api_key)
self.enc = Anthropic().get_tokenizer()
self.model_to_test_description = model_name
self.evaluation_model = ChatOpenAI(model="gpt-4", temperature=0, openai_api_key = self.openai_api_key)
def logistic(self, x, L=100, x0=50, k=.1):
if x == 0:
return 0
if x == 100:
return 100
return np.round(L / (1 + np.exp(-k * (x - x0))), 3)
async def bound_evaluate_and_log(self, sem, *args):
async with sem:
await self.evaluate_and_log(*args)
async def run_test(self):
sem = Semaphore(self.num_concurrent_requests)
# Run through each iteration of context_lengths and depths
tasks = []
for context_length in self.context_lengths:
for depth_percent in self.document_depth_percents:
task = self.bound_evaluate_and_log(sem, context_length, depth_percent)
tasks.append(task)
# Wait for all tasks to complete
await asyncio.gather(*tasks)
def generate_prompt(self, context):
if self.model_provider == "Anthropic":
with open('Anthropic_prompt.txt', 'r') as file:
prompt = file.read()
return prompt.format(retrieval_question=self.retrieval_question, context=context)
elif self.model_provider == "OpenAI":
# Generate the prompt for the Anthropic model
# Replace the following line with the appropriate prompt structure
return [
{
"role": "system",
"content": "You are a helpful AI bot that answers questions for a user. Keep your response short and direct"
},
{
"role": "user",
"content": context
},
{
"role": "user",
"content": f"{self.retrieval_question} Don't give information outside the document or repeat your findings"
}
]
async def evaluate_and_log(self, context_length, depth_percent):
# Checks to see if you've already checked a length/percent/version.
# This helps if the program stop running and you want to restart later
if self.save_results:
if self.result_exists(context_length, depth_percent):
return
# Go generate the required length context and place your needle statement in
context = await self.generate_context(context_length, depth_percent)
# Prepare your message to send to the model you're going to evaluate
prompt = self.generate_prompt(context)
test_start_time = time.time()
# Go see if the model can answer the question to pull out your random fact
if self.model_provider == "OpenAI":
response = await self.model_to_test.chat.completions.create(
model=self.model_name,
messages=prompt,
max_tokens=300,
temperature=0
)
response = response.choices[0].message.content
elif self.model_provider == "Anthropic":
response = await self.model_to_test.completions.create(
model=self.model_name,
max_tokens_to_sample=300,
prompt=prompt,
temperature=0
)
response = response.completion
test_end_time = time.time()
test_elapsed_time = test_end_time - test_start_time
# Compare the reponse to the actual needle you placed
score = self.evaluate_response(response)
results = {
# 'context' : context, # Uncomment this line if you'd like to save the context the model was asked to retrieve from. Warning: This will become very large.
'model' : self.model_to_test_description,
'context_length' : int(context_length),
'depth_percent' : float(depth_percent),
'version' : self.results_version,
'needle' : self.needle,
'model_response' : response,
'score' : score,
'test_duration_seconds' : test_elapsed_time,
'test_timestamp_utc' : datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S%z')
}
self.testing_results.append(results)
if self.print_ongoing_status:
print (f"-- Test Summary -- ")
print (f"Duration: {test_elapsed_time:.1f} seconds")
print (f"Context: {context_length} tokens")
print (f"Depth: {depth_percent}%")
print (f"Score: {score}")
print (f"Response: {response}\n")
context_file_location = f'{self.model_name.replace(".", "_")}_len_{context_length}_depth_{int(depth_percent*100)}'
if self.save_contexts:
results['file_name'] : context_file_location
# Save the context to file for retesting
if not os.path.exists('contexts'):
os.makedirs('contexts')
with open(f'contexts/{context_file_location}_context.txt', 'w') as f:
f.write(context)
if self.save_results:
# Save the context to file for retesting
if not os.path.exists('results'):
os.makedirs('results')
# Save the result to file for retesting
with open(f'results/{context_file_location}_results.json', 'w') as f:
json.dump(results, f)
if self.seconds_to_sleep_between_completions:
await asyncio.sleep(self.seconds_to_sleep_between_completions)
def result_exists(self, context_length, depth_percent):
"""
Checks to see if a result has already been evaluated or not
"""
results_dir = 'results/'
if not os.path.exists(results_dir):
return False
for filename in os.listdir(results_dir):
if filename.endswith('.json'):
with open(os.path.join(results_dir, filename), 'r') as f:
result = json.load(f)
context_length_met = result['context_length'] == context_length
depth_percent_met = result['depth_percent'] == depth_percent
version_met = result.get('version', 1) == self.results_version
model_met = result['model'] == self.model_name
if context_length_met and depth_percent_met and version_met and model_met:
return True
return False
async def generate_context(self, context_length, depth_percent):
# Load up tiktoken so we navigate tokens more easily
# Get your Paul Graham files loaded into a string
context = self.read_context_files()
# Truncate the Paul Graham essays to the context length you desire
context = self.encode_and_trim(context, context_length)
# Insert your random statement according to your depth percent
context = self.insert_needle(context, depth_percent, context_length)
return context
def encode_text_to_tokens(self, text):
if self.model_provider == "OpenAI":
return self.enc.encode(text)
elif self.model_provider == "Anthropic":
# Assuming you have a different encoder for Anthropic
return self.enc.encode(text).ids
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def insert_needle(self, context, depth_percent, context_length):
tokens_needle = self.encode_text_to_tokens(self.needle)
tokens_context = self.encode_text_to_tokens(context)
# Reducing the context length by 150 buffer. This is to account for system message, the user question, and response.
context_length -= self.final_context_length_buffer
# If your context + needle are longer than the context length (which it will be), then reduce tokens from the context by the needle length
if len(tokens_context) + len(tokens_needle) > context_length:
tokens_context = tokens_context[:context_length - len(tokens_needle)]
if depth_percent == 100:
# If your depth percent is 100 (which means your needle is the last thing in the doc), throw it at the end
tokens_new_context = tokens_context + tokens_needle
else:
# Go get the position (in terms of tokens) to insert your needle
insertion_point = int(len(tokens_context) * (depth_percent / 100))
# tokens_new_context represents the tokens before the needle
tokens_new_context = tokens_context[:insertion_point]
# We want to make sure that we place our needle at a sentence break so we first see what token a '.' is
period_tokens = self.encode_text_to_tokens('.')
# Then we iteration backwards until we find the first period
while tokens_new_context and tokens_new_context[-1] not in period_tokens:
insertion_point -= 1
tokens_new_context = tokens_context[:insertion_point]
# Once we get there, then add in your needle, and stick the rest of your context in on the other end.
# Now we have a needle in a haystack
tokens_new_context += tokens_needle + tokens_context[insertion_point:]
# Convert back to a string and return it
new_context = self.decode_tokens(tokens_new_context)
return new_context
def evaluate_response(self, response):
accuracy_criteria = {
"accuracy": """
Score 1: The answer is completely unrelated to the reference.
Score 3: The answer has minor relevance but does not align with the reference.
Score 5: The answer has moderate relevance but contains inaccuracies.
Score 7: The answer aligns with the reference but has minor omissions.
Score 10: The answer is completely accurate and aligns perfectly with the reference.
Only respond with a numberical score
"""
}
# Using GPT-4 to evaluate
evaluator = load_evaluator(
"labeled_score_string",
criteria=accuracy_criteria,
llm=self.evaluation_model,
)
eval_result = evaluator.evaluate_strings(
# The models response
prediction=response,
# The actual answer
reference=self.needle,
# The question asked
input=self.retrieval_question,
)
return int(eval_result['score'])
def get_context_length_in_tokens(self, context):
if self.model_provider == "OpenAI":
return len(self.enc.encode(context))
elif self.model_provider == "Anthropic":
# Assuming you have a different encoder for Anthropic
return len(self.enc.encode(context).ids)
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def read_context_files(self):
context = ""
max_context_length = max(self.context_lengths)
while self.get_context_length_in_tokens(context) < max_context_length:
for file in glob.glob(f"{self.haystack_dir}/*.txt"):
with open(file, 'r') as f:
context += f.read()
return context
def get_tokens_from_context(self, context):
if self.model_provider == "OpenAI":
return self.enc.encode(context)
elif self.model_provider == "Anthropic":
# Assuming you have a different encoder for Anthropic
return self.enc.encode(context).ids
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def decode_tokens(self, tokens, context_length=None):
if self.model_provider == "OpenAI":
return self.enc.decode(tokens[:context_length])
elif self.model_provider == "Anthropic":
# Assuming you have a different decoder for Anthropic
return self.enc.decode(tokens[:context_length])
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def encode_and_trim(self, context, context_length):
tokens = self.get_tokens_from_context(context)
if len(tokens) > context_length:
context = self.decode_tokens(tokens, context_length)
return context
def get_results(self):
return self.testing_results
def print_start_test_summary(self):
print ("\n")
print ("Starting Needle In A Haystack Testing...")
print (f"- Model: {self.model_name}")
print (f"- Context Lengths: {len(self.context_lengths)}, Min: {min(self.context_lengths)}, Max: {max(self.context_lengths)}")
print (f"- Document Depths: {len(self.document_depth_percents)}, Min: {min(self.document_depth_percents)}%, Max: {max(self.document_depth_percents)}%")
print (f"- Needle: {self.needle.strip()}")
print ("\n\n")
def start_test(self):
if self.print_ongoing_status:
self.print_start_test_summary()
asyncio.run(self.run_test())
if __name__ == "__main__":
# Tons of defaults set, check out the LLMNeedleHaystackTester's init for more info
ht = LLMNeedleHaystackTester()
ht.start_test()