forked from castorini/pyserini
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_queries.py
104 lines (88 loc) · 3.33 KB
/
convert_queries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Convert MSMARCO queries"""
import json
import argparse
from transformers import AutoTokenizer, AutoModel
import spacy
from convert_common import read_stopwords, SpacyTextParser, get_retokenized
from pyserini.analysis import Analyzer, get_lucene_analyzer
from tqdm import tqdm
import os
"""
add fields to query json with text(lemmatized), text_unlemm, contents(analyzer), raw, entity(NER), text_bert_tok(BERT token)
"""
parser = argparse.ArgumentParser(description='Convert MSMARCO-adhoc queries.')
parser.add_argument('--input', metavar='input file', help='input file',
type=str, required=True)
parser.add_argument('--output', metavar='output file', help='output file',
type=str, required=True)
parser.add_argument('--min_query_token_qty', type=int, default=0,
metavar='min # of query tokens', help='ignore queries that have smaller # of tokens')
args = parser.parse_args()
print(args)
arg_vars = vars(args)
inpFile = open(args.input)
outFile = open(args.output, 'w')
minQueryTokQty = args.min_query_token_qty
if os.getcwd().endswith('ltr_msmarco'):
stopwords = read_stopwords('stopwords.txt', lower_case=True)
else:
stopwords = read_stopwords('./scripts/ltr_msmarco/stopwords.txt', lower_case=True)
print(stopwords)
nlp = SpacyTextParser('en_core_web_sm', stopwords, keep_only_alpha_num=True, lower_case=True)
analyzer = Analyzer(get_lucene_analyzer())
nlp_ent = spacy.load("en_core_web_sm")
bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Input file is a TSV file
ln = 0
for line in tqdm(inpFile):
ln += 1
line = line.strip()
if not line:
continue
fields = line.split('\t')
if len(fields) != 2:
print('Misformated line %d ignoring:' % ln)
print(line.replace('\t', '<field delimiter>'))
continue
did, query = fields
query_lemmas, query_unlemm = nlp.proc_text(query)
analyzed = analyzer.analyze(query)
for token in analyzed:
if ' ' in token:
print(analyzed)
query_toks = query_lemmas.split()
doc = nlp_ent(query)
entity = {}
for i in range(len(doc.ents)):
entity[doc.ents[i].text] = doc.ents[i].label_
entity = json.dumps(entity)
if len(query_toks) >= minQueryTokQty:
doc = {"id": did,
"text": query_lemmas,
"text_unlemm": query_unlemm,
"analyzed": ' '.join(analyzed),
"entity": entity,
"raw": query}
doc["text_bert_tok"] = get_retokenized(bert_tokenizer, query.lower())
docStr = json.dumps(doc) + '\n'
outFile.write(docStr)
if ln % 10000 == 0:
print('Processed %d queries' % ln)
print('Processed %d queries' % ln)
inpFile.close()
outFile.close()