
Chapter 4

Subgradient Descent

Contents
4.1 Subgradients . 54
4.2 The algorithm . 55
4.3 Bounded subgradients: O(1/"2) steps 55
4.4 Optimality of first-order methods 55
4.5 Exercises . 56

53

4.1 Subgradients

Definition 4.1. Let f : dom(f) ! R. Then g 2 Rd is a subgradient of f at
x 2 dom(f) if

f(y) � f(x) + g
>(y � x) 8y 2 dom(f). (4.1)

The set of subgradients of f at x is denoted by @f(x).

The notion of a subgradient can be seen as a generalization of the gra-
dient, for functions which are not necessarily differentiable. A prominent
example is the `1-norm, which we have discussed in Exercise 7.

The above definition might look suspiciously familiar to the first-order
characterization of convexity (1.2) we discussed earlier. Indeed, the only
difference is that here we have replaced rf(x) by g. It turns out that con-
vexity is equivalent to the existence of subgradients everywhere. So we
get a “first order characterization” of convexity that also covers the non-
differentiable case.

Lemma 4.2 (Exercise 23). A function f : dom(f) ! R is convex if and only if
dom(f) is convex and @f(x) 6= ; for all x 2 dom(f).

It turns out that Lemma 2.2 also generalizes to subgradients.

Lemma 4.3 (Exercise 24). Let f : Rd
! R be convex, B 2 R+. Then the

following two statements are equivalent.

(i) kgk B for all x 2 Rd and all g 2 @f(x).

(ii) |f(x)� f(y)| Bkx� yk for all x,y 2 Rd.

Subgradient optimality condition. Subgradients also allow us to de-
scribe cases of optimality for functions which are not necessarily differ-
entiable (and not necessarily convex), generalizing Lemma 1.12:

Lemma 4.4. Suppose that f is any function over dom(f), and x 2 dom(f). If
0 2 @f(x), then x is a global minimum.

Proof. By (4.1), g = 0 2 @f(x) gives

f(y) � f(x) + g
>(y � x) = f(x)

for all y 2 dom(f), so x is a global minimum.

54

4.2 The algorithm
An iteration of subgradient descent is defined as

Let gt 2 @f(xt)

xt+1 := xt � �gt. (4.2)

4.3 Bounded subgradients: O(1/"2) steps
The following result gives the convergence for Subgradient Descent. It is
identical to Theorem 2.1, up to relaxing the requirement of differentiability.

Theorem 4.5. Let f : Rd
! R be convex and B-Lipschitz continuous on Rd

with a global minimum x
?; furthermore, suppose that kx0 � x

?
k R. Choosing

the constant stepsize

� :=
R

B
p
T
,

subgradient descent (4.2) yields

1

T

T�1X

t=0

f(xt)� f(x?)
RB
p
T
.

Proof. The proof is identically to the vanilla analysis for gradient descent
presented in Section 2.3. The only change is that the use of the first-order
characterization of convexity as in the very first step (2.2) of the vanilla
analysis is replaced by the subgradient property (4.1).

Projected subgradient descent. Theorem 3.2 for constrained optimiza-
tion in O(1/"2) steps directly extends to the case of subgradient descent as
well.

4.4 Optimality of first-order methods
With all the convergence rates we have seen so far, a very natural question
to ask is if these rates are best possible or not. Surprisingly, the rate can
indeed not be improved in general.

55

Theorem 4.6 (Nesterov). For any T d � 1 and starting point x0, there is a
function f in the problem class of B-Lipschitz functions over Rd, such that any
(sub)gradient method has an objective error at least

f(xT)� f(x?) �
RB

2(1 +
p
T + 1)

.

The above theorem applies to all first-order methods which form iter-
ates by linearly combining past iterates and (sub)gradients, and requires
the dimension d to be sufficiently large.

4.5 Exercises
Exercise 23. Prove the easy direction of Lemma 4.2, meaning that the existence
of subgradients everywhere implies convexity!

Exercise 24. Prove Lemma 4.3 (Lipschitz continuity and bounded subgradients).

56

Chapter 5

Stochastic Gradient Descent

Contents
5.1 The algorithm . 58
5.2 Stochastic vanilla analysis . 59

5.2.1 Bounded stochastic gradients: O(1/"2) steps 60
5.2.2 Strong convexity: O(1/") steps 62
5.2.3 Mini-batch variants . 64

57

5.1 The algorithm
Many objective functions occurring in machine learning are formulated as
sum structured objective functions

f(x) :=
1

n

nX

i=1

fi(x). (5.1)

Here fi is typically the cost function of the i-th datapoint, taken from a
training set of n elements in total.

We have already seen an example for this: the loss function (1.9) in the
handwritten digit recognition (Section 1.6.1) has one term for each of the n
training images x 2 P :

`(W) = �

X

x2P

ln zd(x)(Wx).

The normalizing factor 1/n that we assume in the general setting (5.1)
will just simplify the following a bit.

An iteration of stochastic gradient descent (SGD) in its basic form is de-
fined as

sample i 2 [n] uniformly at random
xt+1 := xt � �trfi(xt). (5.2)

This update looks almost identical to the classical gradient method, the
only difference being that we have computed the gradient not of the en-
tire f but only of one particular (randomly chosen) function fi. As we will
need varying stepsizes a bit later, we allow for the stepsize to depend on t
now.

In the above setting, the update vector gt := rfi(xt) is called a stochastic
gradient. Formally, gt is a vector of d random variables, but we will also
simply call this a random variable.

The vector gt may be far from the true gradient, and of high variance,
but in expectation over the random choice of i, it does coincide with the
full gradient of f . We formalize this as

E
⇥
gt

��xt

⇤
= rf(xt). (5.3)

58

Here, E
⇥
gt

��xt

⇤
is itself a random variable, the conditional expectation

of gt, given the random variable xt. Similarly, the gradient rf(xt) is—as a
function of the random variable xt—now also a random variable. Hence,
(5.3) is an equality between two random variables. It says that for all x,

E
⇥
gt

��xt

⇤
(x) = E

⇥
gt

��xt = x
⇤
=

1

n

nX

i=1

rfi(x) = rf(x) = rf(xt)(x).

Exercise 25 lets you recall some basics around conditional expectations.
Under (5.3) we say that the stochastic gradient gt is an unbiased estimator
of the gradient, for any time-step t.

The crucial advantage of SGD versus its classical gradient descent coun-
terpart is the efficiency per iteration: While computing the full gradient for
a sum structured problem (5.1) would require us to compute n individual
gradients of the fi functions, an iteration of SGD requires only a single
one of those, and therefore is n times cheaper. SGD has therefore become
the main workhorse for training machine learning models. Whether such
cheaper iterations also give similar progress is another question, which we
analyze next.

5.2 Stochastic vanilla analysis
It turns out that we can redo major parts of the vanilla analysis with rf(xt)
replaced by gt, except that we cannot get started with

f(xt)� f(x?) g
>
t (xt � x

?).

Indeed, this inequality only holds in expectation, a fact that we prove and
exploit later. But we can continue rewriting the right-hand side exactly as
we did in the vanilla analysis. For now, let’s assume fixed stepsize �t := �.

By definition of stochastic gradient descent (5.2), gt = (xt � xt+1)/�,
hence

g
>
t (xt � x

?) =
1

�
(xt � xt+1)

>(xt � x
?). (5.4)

59

The basic vector equation 2v>
w = kvk

2 + kwk
2
� kv �wk

2 yields

g
>
t (xt � x

?) =
1

2�

�
kxt � xt+1k

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
�

=
1

2�

�
�2
kgtk

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
�
, (5.5)

using the definition (5.2) of SGD again. Finally, the telescoping sum:
T�1X

t=0

�
g
>
t (xt � x

?)
�

�

2

T�1X

t=0

kgtk
2 +

1

2�

�
kx0 � x

?
k
2
� kxT � x

?
k
2
�

�

2

T�1X

t=0

kgtk
2 +

1

2�
kx0 � x

?
k
2. (5.6)

5.2.1 Bounded stochastic gradients: O(1/"2) steps
To get a first result out of the vanilla analysis, we assumed in Section 2.3
that krf(x)k2 L2 for all x 2 Rd, where L was a constant. Here, we
are assuming the same for the expected squared norms of our stochastic
gradients, except that the constant is now called B2. And we are getting
the same result, expect that it now holds for the expected function values.
Theorem 5.1. Let f : Rd

! R be convex and differentiable, x? a global mini-
mum; furthermore, suppose that kx0 � x

?
k R, and that E

⇥
kgtk

2
⇤
 B2 for

all t. Choosing the constant stepsize

� :=
R

B
p
T

stochastic gradient descent (5.2) yields

1

T

T�1X

t=0

E
⇥
f(xt)

⇤
� f(x?)

RB
p
T
.

Proof. Using convexity and unbiasedness of gt, we compute

E
⇥
f(xt)

⇤
� f(x?) = E

⇥
f(xt)� f(x?)

⇤

 E
⇥
rf(xt)

>(xt � x
?)
⇤

= E
⇥
E
⇥
gt

��xt

⇤>
(xt � x

?)
⇤

= E
⇥
E
⇥
g
>
t (xt � x

?)
��xt

⇤⇤

= E
⇥
g
>
t (xt � x

?)
⇤
,

60

where the second-to-last step uses linearity of (conditional) expectations,
while the last step is known as the tower rule; see again Exercise 25. Now
we can again use linearity of expectation and then (5.6). We get

1

T

T�1X

t=0

E
⇥
f(xt)

⇤
� f(x?)

1

T
E
⇥ T�1X

t=0

g
>
t (xt � x

?)
⇤

=
1

T
E
⇥�
2

T�1X

t=0

kgtk
2 +

1

2�
kx0 � x

?
k
2
⇤

=
1

T

�

2

T�1X

t=0

E
⇥
kgtk

2
⇤
+

1

2�
kx0 � x

?
k
2

!

RB
p
T
,

after plugging in our value of � and the assumption on E
⇥
kgtk

2
⇤

and kx0�

x
?
k.

Stochastic Subgradient Descent. For problems which are not necessar-
ily differentiable, we modify SGD to use a subgradient of fi in each itera-
tion. The update of stochastic subgradient descent is given by

sample i 2 [n] uniformly at random
let gt 2 @fi(xt) (5.7)
xt+1 := xt � �tgt.

In other words, we are using an unbiased estimate of a subgradient at each
step, E

⇥
gt

��xt

⇤
2 @f(xt).

The above analysis of convergence in O(1/"2) steps directly extends
to the case of subgradient descent here as well, by using the subgradient
property (4.1) at the beginning of the proof, where convexity was applied.

Constrained optimization. For constrained optimization, Theorem 5.1
for the convergence in O(1/"2) steps directly extends to constrained prob-
lems as well. After every step of SGD, projection back to X is applied as
usual. The resulting algorithm is called projected SGD.

61

5.2.2 Strong convexity: O(1/") steps
It is possible to strengthen our above SGD analysis. One way to do so
is under the additional assumption of strong convexity of the objective
function f (as in Definition 2.8). For this case, we will now for the first time
depart from algorithm variants with a constant stepsize �, but instead use
a time-varying stepsize �t decreasing over the time t.

Theorem 5.2. Let f : Rd
! R be differentiable and strongly convex with pa-

rameter µ > 0; let x? be the unique global minimum of f , and E
⇥
kgtk

2
⇤
 B2

for all x. Choosing the decreasing stepsize

�t :=
2

µ(t+ 1)

stochastic gradient descent (5.2) yields

E
h
f

✓
2

T (T + 1)

TX

t=1

t · xt

◆
� f(x?)

i

2B2

µ(T + 1)
.

Proof. We use the definition of the SGD step, and the basic vector equation
2v>

w = kvk
2 + kwk

2
� kv � wk

2 which we have also used in the vanilla
analysis, we have

kxt+1 � x
?
k
2 = kxt � �tgt � x

?
k
2

= kxt � x
?
k
2 + �2

t kgtk
2
� 2�tg

>
t (xt � x

?)

Taking conditional expectation on both sides, and using unbiasedness (5.3),
we get

E
⇥
kxt+1 � x

?
k
2
��xt

⇤

= kxt � x
?
k
2 + �2

tE
⇥
kgtk

2
��xt

⇤
� 2�trf(xt)

>(xt � x
?) (5.8)

Strong convexity (2.12) with y = x
⇤,x = xt yields

rf(xt)
>(xt � x

?) � f(xt)� f(x?) +
µ

2
kxt � x

?
k
2 ,

hence (5.8) further yields

E
h
kxt+1 � x

?
k
2
��xt

i

 kxt � x
?
k
2 + �2

tE
h
kgtk

2
��xt

i
� 2�t

f(xt)� f(x?) +

µ

2
kxt � x

?
k
2

�

62

Rearranging and again taking expectation E over the randomness of the
entire sequence of steps 0, 1, . . . , t, as well as usingE

⇥
kgtk

2
⇤
 B2, we have

2�tE[f(xt)� f(x?)] �2
tB

2 + (1� µ�t)E
⇥
kxt � x

?
k
2 ⇤

� E
⇥
kxt+1 � x

?
k
2 ⇤

E[f(xt)� f(x?)]
B2�t
2

+
(��1

t � µ)

2
E
⇥
kxt � x

?
k
2 ⇤

�
��1
t

2
E
⇥
kxt+1 � x

?
k
2 ⇤

Now using the stepsize �t :=
2

µ(t+1) , and multiplying the above inequality
by t both the sides,

tE

f(xt)� f(x?)

�

B2t

µ(t+ 1)
+

µ

4

t(t� 1)E

h
kxt � x

?
k
2
i
� t(t+ 1)E

h
kxt+1 � x

?
k
2
i�

B2

µ
+

µ

4

t(t� 1)E

h
kxt � x

?
k
2
i
� t(t+ 1)E

h
kxt+1 � x

?
k
2
i�

Summing from t = 1, . . . , T , we obtain the following telescoping sum,

TX

t=1

t · E
⇥
f(xt)� f(x?)

⇤

TB2

µ
+

µ

4

0� T (T + 1)E

⇥
kxT � x

?
k
2 ⇤
�

TB2

µ
.

Since
2

T (T + 1)

TX

t=1

t = 1,

Jensen’s inequality (Lemma 1.5) yields

f

✓
2

T (T + 1)

TX

t=1

t · xt

◆
� f(x?)

2

T (T + 1)

TX

t=1

t(f(xt)� f(x⇤)).

This in turn implies

E
h
f

✓
2

T (T + 1)

TX

t=1

t · xt

◆
� f(x?)

i

2B2

µ(T + 1)
.

Stochastic Subgradient Descent. Again as a corollary, we have the same
convergence rate for the case of stochastic subgradient descent (5.7) here
as well, by using the subgradient property (4.1) at the beginning of the
proof in (5.8), where convexity was applied.

63

5.2.3 Mini-batch variants
Instead of using a single element fi of our sum objective (5.1) to form a
stochastic gradient gt = rfi(xt), another variant is to use an average of
several of them:

g̃t :=
1

m

mX

j=1

g
j
t . (5.9)

where g
j
t = rfij(xt) for an index ij . The set of the (distinct) ij indices is

called a mini-batch, and m is the mini batch size.
Using the step direction g̃t defines mini-batch SGD. For m = 1, we re-

cover SGD as originally defined, while for m = n we recover full gradient
descent.

Mini-batch SGD can be advantageous in several applications. For ex-
ample, parallelization over up to m processors will easily give a speed-up
for the gradient computation, which is typically the main cost of running
SGD. Here, parallelization exploits the fact that all gj

t are defined at the
same iterate xt and can therefore be computed independently.

Taking an average of many independent random variables reduces the
variance. In the context of mini-batch SGD, we obtain that for larger size
of the mini-batch m our estimate g̃t will be closer to the true gradient, in
expectation:

E
h���g̃t �rf(xt)

���
2i

=E
h���

1

m

mX

j=1

g
j
t �rf(xt)

���
2i

=
1

m
E
⇥
kg

1
t �rf(xt)k

2
⇤

=
1

m
E
⇥
kg

1
t k

2
⇤
�

1

m
krf(xt)k

2

B2

m
.

Using a modification of the above analysis, it is possible to use this
property to relate the above convergence rate of SGD to the rate of full
gradient descent.

Exercise 25. Let X, Y be two random variables over a finite probability space
(⌦,P); this avoids subtleties in defining conditional probabilities and expecta-
tions; and it covers the random variables occurring in SGD, since in each step,
we are randomly choosing among a finite set of n indices.

64

The conditional expectation of Y given X is the random variable E
⇥
Y
��X
⇤
,

defined by
E
⇥
Y
��X
⇤
(x) := E

⇥
Y
��X = x

⇤
,

where X = x is shorthand for the event {! 2 ⌦ : X(!) = x}.
Hence, the domain of E

⇥
Y
��X
⇤

is X(⌦) (the image of X), and the probability
of x 2 X(⌦) is the probability of the event X = x, i.e. P

⇥
X = x

⇤
.

Also recall that

E
⇥
Y
��X = x

⇤
:=

X

y2Y (⌦)

y · P
⇥
Y = y|X = x

⇤
.

Finally, for two events A and B, the conditional probability P
⇥
A
��B
⇤

is defined as

P
⇥
A
��B
⇤
:=
P
⇥
A \ B

⇤

P
⇥
B
⇤ ,

if P(B) 6= 0, and 0 otherwise. The equation

P
⇥
A
��B
⇤
P
⇥
B
⇤
= P

⇥
A \B

⇤

always holds.
Prove the following statements.

(i) Let X be a random variable, x in the image of X . For random variables
Y1, . . . , Ym and real numbers �1, . . . ,�m,

mX

i=1

�iE
⇥
Yi

��X
⇤
= E

⇥ mX

i=1

�iYi

��X
⇤

(ii) Tower rule:
E
⇥
E
⇥
Y
��X
⇤⇤

= E
⇥
Y
⇤
.

65

