forked from decisionforce/TPN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_recognizer.py
259 lines (228 loc) · 9.37 KB
/
test_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import argparse
import torch
import mmcv
import tempfile
import os.path as osp
import torch.distributed as dist
import shutil
from mmcv.runner import load_checkpoint, parallel_test, obj_from_dict, get_dist_info
from mmcv.parallel import scatter, collate, MMDataParallel, MMDistributedDataParallel
from mmaction.apis import init_dist
from mmaction import datasets
from mmaction.datasets import build_dataloader
from mmaction.models import build_recognizer, recognizers
from mmaction.core.evaluation.accuracy import (softmax, top_k_accuracy, non_mean_class_accuracy,
mean_class_accuracy)
def single_test(model, data_loader):
model.eval()
results = []
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
data['get_logit'] = True
result = model(return_loss=False, **data)
results.append(result)
batch_size = data['img_group_0'].data[0].size(0)
for _ in range(batch_size):
prog_bar.update()
return results
def _data_func(data, device_id):
data = scatter(collate([data], samples_per_gpu=1), [device_id])[0]
return dict(return_loss=False, rescale=True, **data)
def multi_gpu_test(model, data_loader, tmpdir=None):
model.eval()
results = []
dataset = data_loader.dataset
rank, world_size = get_dist_info()
if rank == 0:
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
# data['get_logit'] = True
result = model(return_loss=False, rescale=True, **data)
results.append(result)
if rank == 0:
batch_size = data['img_group_0'].data[0].size(0)
for _ in range(batch_size * world_size):
prog_bar.update()
# collect results from all ranks
results = collect_results(results, len(dataset), tmpdir)
return results
def collect_results(result_part, size, tmpdir=None):
rank, world_size = get_dist_info()
# create a tmp dir if it is not specified
if tmpdir is None:
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full(
(MAX_LEN,), 32, dtype=torch.uint8, device='cuda')
if rank == 0:
tmpdir = tempfile.mkdtemp()
print('temp_dir', tmpdir)
tmpdir = torch.tensor(
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
dir_tensor[:len(tmpdir)] = tmpdir
dist.broadcast(dir_tensor, 0)
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
else:
mmcv.mkdir_or_exist(tmpdir)
# dump the part result to the dir
mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
dist.barrier()
# collect all parts
if rank != 0:
return None
else:
# load results of all parts from tmp dir
part_list = []
for i in range(world_size):
part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
part_list.append(mmcv.load(part_file))
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
# remove tmp dir
shutil.rmtree(tmpdir)
return ordered_results
def parse_args():
parser = argparse.ArgumentParser(description='Test an action recognizer')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoinls'
't file')
parser.add_argument(
'--gpus', default=8, type=int, help='GPU number used for testing')
parser.add_argument(
'--proc_per_gpu',
default=1,
type=int,
help='Number of processes per GPU')
parser.add_argument('--out', help='output result file')
parser.add_argument('--log', help='output log file')
parser.add_argument('--fcn_testing', action='store_true', default=False,
help='whether to use fcn testing')
parser.add_argument('--flip', action='store_true', default=False,
help='whether to flip videos')
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--ignore_cache', action='store_true', help='whether to ignore cache')
args = parser.parse_args()
print('args==>>', args)
return args
def main():
args = parse_args()
assert args.out, ('Please specify the output path for results')
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = mmcv.Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
if cfg.model.get('necks', None) is not None:
cfg.model.necks.aux_head_config = None
if cfg.data.test.oversample == 'three_crop':
cfg.model.spatial_temporal_module.spatial_size = 8
if args.fcn_testing:
cfg.model['cls_head'].update({'fcn_testing': True})
cfg.model.update({'fcn_testing': True})
if args.flip:
cfg.model.update({'flip': True})
dataset = obj_from_dict(cfg.data.test, datasets, dict(test_mode=True))
if args.ignore_cache and args.out is not None:
if not distributed:
if args.gpus == 1:
model = build_recognizer(
cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
load_checkpoint(model, args.checkpoint, strict=False, map_location='cpu')
model = MMDataParallel(model, device_ids=[0])
data_loader = build_dataloader(
dataset,
imgs_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
num_gpus=1,
dist=False,
shuffle=False)
outputs = single_test(model, data_loader)
else:
model_args = cfg.model.copy()
model_args.update(train_cfg=None, test_cfg=cfg.test_cfg)
model_type = getattr(recognizers, model_args.pop('type'))
outputs = parallel_test(
model_type,
model_args,
args.checkpoint,
dataset,
_data_func,
range(args.gpus),
workers_per_gpu=args.proc_per_gpu)
else:
data_loader = build_dataloader(
dataset,
imgs_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
model = build_recognizer(
cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
load_checkpoint(model, args.checkpoint, strict=False, map_location='cpu')
model = MMDistributedDataParallel(model.cuda())
outputs = multi_gpu_test(model, data_loader, args.tmpdir)
else:
try:
if distributed:
rank, _ = get_dist_info()
if rank == 0:
outputs = mmcv.load(args.out)
else:
outputs = mmcv.load(args.out)
except:
raise FileNotFoundError
rank, _ = get_dist_info()
if args.out:
if rank == 0:
print('writing results to {}'.format(args.out))
mmcv.dump(outputs, args.out)
gt_labels = []
for i in range(len(dataset)):
ann = dataset.get_ann_info(i)
gt_labels.append(ann['label'])
results = []
for res in outputs:
res_list = [res[i] for i in range(res.shape[0])]
results += res_list
results = results[:len(gt_labels)]
print('results_length', len(results))
top1, top5 = top_k_accuracy(results, gt_labels, k=(1, 5))
mean_acc = mean_class_accuracy(results, gt_labels)
non_mean_acc = non_mean_class_accuracy(results, gt_labels)
if args.log:
f = open(args.log, 'w')
f.write(f'Testing ckpt from {args.checkpoint}\n')
f.write(f'Testing config from {args.config}\n')
f.write("Mean Class Accuracy = {:.04f}\n".format(mean_acc * 100))
f.write("Top-1 Accuracy = {:.04f}\n".format(top1 * 100))
f.write("Top-5 Accuracy = {:.04f}\n".format(top5 * 100))
f.close()
else:
print("Mean Class Accuracy = {:.02f}".format(mean_acc * 100))
print("Top-1 Accuracy = {:.02f}".format(top1 * 100))
print("Top-5 Accuracy = {:.02f}".format(top5 * 100))
print("Non mean Class Accuracy", non_mean_acc)
print('saving non_mean acc')
if __name__ == '__main__':
main()