-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutil.py
63 lines (57 loc) · 1.77 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import cv2
import os
import torch
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')
def get_control(type):
if type == 'canny':
from .canny import CannyDetector
apply_control = CannyDetector()
elif type == 'openpose':
from .openpose import OpenposeDetector
apply_control = OpenposeDetector()
elif type == 'depth' or type == 'normal':
from .midas import MidasDetector
apply_control = MidasDetector()
elif type == 'hed':
from .hed import HEDdetector
apply_control = HEDdetector()
elif type == 'scribble':
apply_control = None
elif type == 'seg':
from .uniformer import UniformerDetector
apply_control = UniformerDetector()
elif type == 'mlsd':
from .mlsd import MLSDdetector
apply_control = MLSDdetector()
else:
raise TypeError(type)
return apply_control
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img