-
Notifications
You must be signed in to change notification settings - Fork 252
/
Copy pathiFlashformer.py
65 lines (55 loc) · 2.57 KB
/
iFlashformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.Transformer_EncDec import Encoder, EncoderLayer
from layers.SelfAttention_Family import FlashAttention, AttentionLayer
from layers.Embed import DataEmbedding_inverted
import numpy as np
class Model(nn.Module):
"""
Vanilla Transformer
with O(L^2) complexity
Paper link: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
"""
def __init__(self, configs):
super(Model, self).__init__()
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.output_attention = configs.output_attention
# Embedding
self.enc_embedding = DataEmbedding_inverted(configs.seq_len, configs.d_model, configs.embed, configs.freq,
configs.dropout)
# Encoder-only architecture
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer(
FlashAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=configs.output_attention), configs.d_model, configs.n_heads),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation
) for l in range(configs.e_layers)
],
norm_layer=torch.nn.LayerNorm(configs.d_model)
)
self.projector = nn.Linear(configs.d_model, configs.pred_len, bias=True)
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# Normalization from Non-stationary Transformer
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
_, _, N = x_enc.shape
# Embedding
enc_out = self.enc_embedding(x_enc, x_mark_enc)
enc_out, attns = self.encoder(enc_out, attn_mask=None)
dec_out = self.projector(enc_out).permute(0, 2, 1)[:, :, :N]
# De-Normalization from Non-stationary Transformer
dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
return dec_out
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]