该项目是使用 YOLOv5 来训练在智能工地安全领域中头盔目标检测的应用
使用的数据集:Safety-Helmet-Wearing-Dataset ,感谢这位大神的开源数据集!
本文结合 YOLOv5官方教程 来写
首先确保自己的环境:
Python >= 3.7
Pytorch >= 1.5
因为我这里只是判断 【人没有带头盔】、【人有带头盔】两种情况,基于 data/coco128.yaml
文件,创建自己的数据集配置文件 custom_data.yaml
# 训练集和验证集的 labels 和 image 文件的位置
train: ./score/images/train
val: ./score/images/val
# number of classes
nc: 2
# class names
names: ['person', 'hat']
使用标注工具类似于 Labelbox 、CVAT 、精灵标注助手 标注之后,需要生成每个图片对应的 .txt
文件,其规范如下:
- 每一行都是一个目标
- 类别序号是零索引开始的(从0开始)
- 每一行的坐标
class x_center y_center width height
格式 - 框坐标必须采用归一化的 xywh格式(从0到1)。如果您的框以像素为单位,则将
x_center
和width
除以图像宽度,将y_center
和height
除以图像高度。代码如下:
def convert(size, box):
"""
将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
:param size: 图片的尺寸: [w,h]
:param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
:return: 转换后的 [x,y,w,h]
"""
x1 = int(box[0])
y1 = int(box[1])
x2 = int(box[2])
y2 = int(box[3])
dw = np.float32(1. / int(size[0]))
dh = np.float32(1. / int(size[1]))
w = x2 - x1
h = y2 - y1
x = x1 + (w / 2)
y = y1 + (h / 2)
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return [x, y, w, h]
生成的 .txt
文件放置的名字是图片的名字,放置在 label 文件夹中,例如:
./score/images/train/00001.jpg # image
./score/labels/train/00001.txt # label
生成的 .txt
例子:
1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374
文件树如下
在文件夹 ./models
下选择一个你需要的模型
这里选择了 yolov5s
模型进行训练,权重也是基于 yolov5s.pt
来训练
$ python train.py --img 640 --batch 16 --epochs 5 --data ./data/custom_data.yaml --cfg ./models/yolov5s.yaml --weights ./yolov5s.pt
其中,yolov5s.pt
需要自行下载放在本工程的根目录即可,下载地址 官方权重
训练之后,会保存在 ./runs
文件夹里面,每个 exp
文件里面可以看到训练的效果
侦测图片会保存在 ./inferenct/output/
文件夹下
运行命令:
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream