You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\core.py:77 in init
kwargs[nm].setup(self)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\transform.py:202 in setup
for t in tfms: self.add(t,items, train_setup)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\transform.py:206 in add
for t in ts: t.setup(items, train_setup)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\transform.py:89 in setup
return self.setups(getattr(items, 'train', items) if train_setup else items)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\dispatch.py:122 in call
return f(*args, **kwargs)
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\preprocessing.py:159 in setups
o, *_ = dl.one_batch()
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\load.py:189 in one_batch
with self.fake_l.no_multiproc(): res = first(self)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\basics.py:709 in first
return next(x, None)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\load.py:129 in iter
for b in _loadersself.fake_l.num_workers==0:
File D:\Anaconda\envs\TSAI\lib\site-packages\torch\utils\data\dataloader.py:631 in next
data = self._next_data()
File D:\Anaconda\envs\TSAI\lib\site-packages\torch\utils\data\dataloader.py:675 in _next_data
data = self._dataset_fetcher.fetch(index) # may raise StopIteration
File D:\Anaconda\envs\TSAI\lib\site-packages\torch\utils\data_utils\fetch.py:41 in fetch
data = next(self.dataset_iter)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\load.py:140 in create_batches
yield from map(self.do_batch, self.chunkify(res))
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\load.py:185 in do_batch
def do_batch(self, b): return self.retain(self.create_batch(self.before_batch(b)), b)
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\core.py:656 in create_batch
return self.dataset[b]
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\core.py:515 in getitem
return tuple([ptl[it] for ptl in self.ptls])
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\core.py:515 in
return tuple([ptl[it] for ptl in self.ptls])
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\torch_core.py:384 in torch_function
res = super().torch_function(func, types, args, ifnone(kwargs, {}))
File D:\Anaconda\envs\TSAI\lib\site-packages\torch_tensor.py:1418 in torch_function
ret = func(*args, **kwargs)
RuntimeError: Could not infer dtype of numpy.int16
The text was updated successfully, but these errors were encountered:
When I attempted to use the TSC function, I encountered some errors. Could you assist me in resolving these issues?
dls = TSDataLoaders.from_dsets(dsets.train, dsets.valid, bs=[64, 128], batch_tfms=[TSStandardize()], num_workers=0)
Traceback (most recent call last):
Cell In[20], line 1
dls = TSDataLoaders.from_dsets(dsets.train, dsets.valid, bs=[64, 128], batch_tfms=[TSStandardize()], num_workers=0)
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\core.py:916 in from_dsets
loaders = [cls._dl_type(d, bs=b, num_workers=num_workers, batch_tfms=batch_tfms, weights=w, partial_n=n, sampler=s, sort=sort, vocab=vocab, **k)\
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\core.py:916 in
loaders = [cls._dl_type(d, bs=b, num_workers=num_workers, batch_tfms=batch_tfms, weights=w, partial_n=n, sampler=s, sort=sort, vocab=vocab, **k)\
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\core.py:630 in init
super().init(dataset, bs=bs, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, verbose=verbose, do_setup=do_setup, **kwargs)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\core.py:77 in init
kwargs[nm].setup(self)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\transform.py:202 in setup
for t in tfms: self.add(t,items, train_setup)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\transform.py:206 in add
for t in ts: t.setup(items, train_setup)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\transform.py:89 in setup
return self.setups(getattr(items, 'train', items) if train_setup else items)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\dispatch.py:122 in call
return f(*args, **kwargs)
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\preprocessing.py:159 in setups
o, *_ = dl.one_batch()
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\load.py:189 in one_batch
with self.fake_l.no_multiproc(): res = first(self)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastcore\basics.py:709 in first
return next(x, None)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\load.py:129 in iter
for b in _loadersself.fake_l.num_workers==0:
File D:\Anaconda\envs\TSAI\lib\site-packages\torch\utils\data\dataloader.py:631 in next
data = self._next_data()
File D:\Anaconda\envs\TSAI\lib\site-packages\torch\utils\data\dataloader.py:675 in _next_data
data = self._dataset_fetcher.fetch(index) # may raise StopIteration
File D:\Anaconda\envs\TSAI\lib\site-packages\torch\utils\data_utils\fetch.py:41 in fetch
data = next(self.dataset_iter)
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\load.py:140 in create_batches
yield from map(self.do_batch, self.chunkify(res))
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\data\load.py:185 in do_batch
def do_batch(self, b): return self.retain(self.create_batch(self.before_batch(b)), b)
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\core.py:656 in create_batch
return self.dataset[b]
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\core.py:515 in getitem
return tuple([ptl[it] for ptl in self.ptls])
File D:\Anaconda\envs\TSAI\lib\site-packages\tsai\data\core.py:515 in
return tuple([ptl[it] for ptl in self.ptls])
File D:\Anaconda\envs\TSAI\lib\site-packages\fastai\torch_core.py:384 in torch_function
res = super().torch_function(func, types, args, ifnone(kwargs, {}))
File D:\Anaconda\envs\TSAI\lib\site-packages\torch_tensor.py:1418 in torch_function
ret = func(*args, **kwargs)
RuntimeError: Could not infer dtype of numpy.int16
The text was updated successfully, but these errors were encountered: