forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_metrics.py
77 lines (58 loc) · 2.58 KB
/
test_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import uuid
from fairseq import metrics
class TestMetrics(unittest.TestCase):
def test_nesting(self):
with metrics.aggregate() as a:
metrics.log_scalar("loss", 1)
with metrics.aggregate() as b:
metrics.log_scalar("loss", 2)
self.assertEqual(a.get_smoothed_values()["loss"], 1.5)
self.assertEqual(b.get_smoothed_values()["loss"], 2)
def test_new_root(self):
with metrics.aggregate() as a:
metrics.log_scalar("loss", 1)
with metrics.aggregate(new_root=True) as b:
metrics.log_scalar("loss", 2)
self.assertEqual(a.get_smoothed_values()["loss"], 1)
self.assertEqual(b.get_smoothed_values()["loss"], 2)
def test_nested_new_root(self):
with metrics.aggregate() as layer1:
metrics.log_scalar("loss", 1)
with metrics.aggregate(new_root=True) as layer2:
metrics.log_scalar("loss", 2)
with metrics.aggregate() as layer3:
metrics.log_scalar("loss", 3)
with metrics.aggregate(new_root=True) as layer4:
metrics.log_scalar("loss", 4)
metrics.log_scalar("loss", 1.5)
self.assertEqual(layer4.get_smoothed_values()["loss"], 4)
self.assertEqual(layer3.get_smoothed_values()["loss"], 3)
self.assertEqual(layer2.get_smoothed_values()["loss"], 2.5)
self.assertEqual(layer1.get_smoothed_values()["loss"], 1.25)
def test_named(self):
name = str(uuid.uuid4())
metrics.reset_meters(name)
with metrics.aggregate(name):
metrics.log_scalar("loss", 1)
metrics.log_scalar("loss", 3)
with metrics.aggregate(name):
metrics.log_scalar("loss", 2)
self.assertEqual(metrics.get_smoothed_values(name)["loss"], 1.5)
def test_nested_duplicate_names(self):
name = str(uuid.uuid4())
metrics.reset_meters(name)
with metrics.aggregate(name):
metrics.log_scalar("loss", 1)
with metrics.aggregate() as other:
with metrics.aggregate(name):
metrics.log_scalar("loss", 2)
metrics.log_scalar("loss", 6)
self.assertEqual(metrics.get_smoothed_values(name)["loss"], 3)
self.assertEqual(other.get_smoothed_values()["loss"], 2)
if __name__ == "__main__":
unittest.main()