forked from przemekpastuszka/biometrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
137 lines (106 loc) · 3.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Metody biometryczne
# Przemyslaw Pastuszka
from PIL import Image, ImageDraw
import math
import sobel
import copy
def apply_kernel_at(get_value, kernel, i, j):
kernel_size = len(kernel)
result = 0
for k in range(0, kernel_size):
for l in range(0, kernel_size):
pixel = get_value(i + k - kernel_size / 2, j + l - kernel_size / 2)
result += pixel * kernel[k][l]
return result
def apply_to_each_pixel(pixels, f):
for i in range(0, len(pixels)):
for j in range(0, len(pixels[i])):
pixels[i][j] = f(pixels[i][j])
def calculate_angles(im, W, f, g):
(x, y) = im.size
im_load = im.load()
get_pixel = lambda x, y: im_load[x, y]
ySobel = sobel.sobelOperator
xSobel = transpose(sobel.sobelOperator)
result = [[] for i in range(1, x, W)]
for i in range(1, x, W):
for j in range(1, y, W):
nominator = 0
denominator = 0
for k in range(i, min(i + W , x - 1)):
for l in range(j, min(j + W, y - 1)):
Gx = apply_kernel_at(get_pixel, xSobel, k, l)
Gy = apply_kernel_at(get_pixel, ySobel, k, l)
nominator += f(Gx, Gy)
denominator += g(Gx, Gy)
angle = (math.pi + math.atan2(nominator, denominator)) / 2
result[(i - 1) / W].append(angle)
return result
def flatten(ls):
return reduce(lambda x, y: x + y, ls, [])
def transpose(ls):
return map(list, zip(*ls))
def gauss(x, y):
ssigma = 1.0
return (1 / (2 * math.pi * ssigma)) * math.exp(-(x * x + y * y) / (2 * ssigma))
def kernel_from_function(size, f):
kernel = [[] for i in range(0, size)]
for i in range(0, size):
for j in range(0, size):
kernel[i].append(f(i - size / 2, j - size / 2))
return kernel
def gauss_kernel(size):
return kernel_from_function(size, gauss)
def apply_kernel(pixels, kernel):
apply_kernel_with_f(pixels, kernel, lambda old, new: new)
def apply_kernel_with_f(pixels, kernel, f):
size = len(kernel)
for i in range(size / 2, len(pixels) - size / 2):
for j in range(size / 2, len(pixels[i]) - size / 2):
pixels[i][j] = f(pixels[i][j], apply_kernel_at(lambda x, y: pixels[x][y], kernel, i, j))
def smooth_angles(angles):
cos_angles = copy.deepcopy(angles)
sin_angles = copy.deepcopy(angles)
apply_to_each_pixel(cos_angles, lambda x: math.cos(2 * x))
apply_to_each_pixel(sin_angles, lambda x: math.sin(2 * x))
kernel = gauss_kernel(5)
apply_kernel(cos_angles, kernel)
apply_kernel(sin_angles, kernel)
for i in range(0, len(cos_angles)):
for j in range(0, len(cos_angles[i])):
cos_angles[i][j] = (math.atan2(sin_angles[i][j], cos_angles[i][j])) / 2
return cos_angles
def load_image(im):
(x, y) = im.size
im_load = im.load()
result = []
for i in range(0, x):
result.append([])
for j in range(0, y):
result[i].append(im_load[i, j])
return result
def load_pixels(im, pixels):
(x, y) = im.size
im_load = im.load()
for i in range(0, x):
for j in range(0, y):
im_load[i, j] = pixels[i][j]
def get_line_ends(i, j, W, tang):
if -1 <= tang and tang <= 1:
begin = (i, (-W/2) * tang + j + W/2)
end = (i + W, (W/2) * tang + j + W/2)
else:
begin = (i + W/2 + W/(2 * tang), j + W/2)
end = (i + W/2 - W/(2 * tang), j - W/2)
return (begin, end)
def draw_lines(im, angles, W):
(x, y) = im.size
result = im.convert("RGB")
draw = ImageDraw.Draw(result)
for i in range(1, x, W):
for j in range(1, y, W):
tang = math.tan(angles[(i - 1) / W][(j - 1) / W])
(begin, end) = get_line_ends(i, j, W, tang)
draw.line([begin, end], fill=150)
del draw
return result