-
Notifications
You must be signed in to change notification settings - Fork 14
/
mamba2.py
437 lines (366 loc) · 16.2 KB
/
mamba2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"""
mamba2-minimal
==============
A minimal, single-file implementation of the Mamba-2 model in PyTorch.
> **Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality**
> Authors: Tri Dao, Albert Gu
> Paper: https://arxiv.org/abs/2405.21060
"""
import json
from dataclasses import dataclass
from typing import Iterable, NamedTuple, TypeAlias, cast
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import LongTensor, Tensor, nn
Device: TypeAlias = str | torch.device | None
@dataclass
class Mamba2Config:
d_model: int # model dimension (D)
n_layer: int = 24 # number of Mamba-2 layers in the language model
d_state: int = 128 # state dimension (N)
d_conv: int = 4 # convolution kernel size
expand: int = 2 # expansion factor (E)
headdim: int = 64 # head dimension (P)
chunk_size: int = 64 # matrix partition size (Q)
vocab_size: int = 50277
pad_vocab_size_multiple: int = 16
def __post_init__(self):
self.d_inner = self.expand * self.d_model
assert self.d_inner % self.headdim == 0
self.nheads = self.d_inner // self.headdim
if self.vocab_size % self.pad_vocab_size_multiple != 0:
self.vocab_size += (
self.pad_vocab_size_multiple
- self.vocab_size % self.pad_vocab_size_multiple
)
class InferenceCache(NamedTuple):
conv_state: Tensor # (batch, d_inner + 2 * d_state, d_conv)
ssm_state: Tensor # (batch, nheads, headdim, d_state)
@staticmethod
def alloc(batch_size: int, args: Mamba2Config, device: Device = None):
return InferenceCache(
torch.zeros(
batch_size, args.d_inner + 2 * args.d_state, args.d_conv, device=device
),
torch.zeros(
batch_size, args.nheads, args.headdim, args.d_state, device=device
),
)
class Mamba2LMHeadModel(nn.Module):
def __init__(self, args: Mamba2Config, device: Device = None):
super().__init__()
self.args = args
self.device = device
self.backbone = nn.ModuleDict(
dict(
embedding=nn.Embedding(args.vocab_size, args.d_model, device=device),
layers=nn.ModuleList(
[
nn.ModuleDict(
dict(
mixer=Mamba2(args, device=device),
norm=RMSNorm(args.d_model, device=device),
)
)
for _ in range(args.n_layer)
]
),
norm_f=RMSNorm(args.d_model, device=device),
)
)
self.lm_head = nn.Linear(
args.d_model, args.vocab_size, bias=False, device=device
)
self.lm_head.weight = self.backbone.embedding.weight
@staticmethod
def from_pretrained(huggingface_model_id: str, device: Device = None):
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils.hub import cached_file
config_path = cached_file(huggingface_model_id, CONFIG_NAME)
assert config_path, "Failed to get huggingface config file"
state_dict_path = cached_file(huggingface_model_id, WEIGHTS_NAME)
assert state_dict_path, "Failed to get huggingface state dict file"
config = json.load(open(config_path))
args = Mamba2Config(
d_model=config["d_model"],
n_layer=config["n_layer"],
vocab_size=config["vocab_size"],
pad_vocab_size_multiple=config["pad_vocab_size_multiple"],
)
map_location = "cpu" if device is None else device
state_dict = torch.load(
state_dict_path, weights_only=True, map_location=map_location, mmap=True
)
model = Mamba2LMHeadModel(args, device=device)
model.load_state_dict(state_dict)
model.eval()
return model
def forward(
self, input_ids: LongTensor, h: list[InferenceCache] | list[None] | None = None
) -> tuple[LongTensor, list[InferenceCache]]:
"""
Arguments
input_ids: (batch, seqlen) tokens from `EleutherAI/gpt-neox-20b` tokenizer
h: hidden states for inference step. If present the constant-time
(wrt sequence length) inference path will be taken, input_ids
should have shape (batch, 1) containing the next batch of prompt
token.
Return (logits, h)
logits: (batch, seqlen, vocab_size)
h: updated inference cache after processing `input_ids`
"""
seqlen = input_ids.shape[1]
if h is None:
h = [None for _ in range(self.args.n_layer)]
x = self.backbone.embedding(input_ids)
for i, layer in enumerate(self.backbone.layers):
y, h[i] = layer.mixer(layer.norm(x), h[i])
x = y + x
x = self.backbone.norm_f(x)
logits = self.lm_head(x)
return logits[:, :seqlen], cast(list[InferenceCache], h)
def generate(
self,
input_ids: LongTensor,
max_new_length: int = 20,
temperature: float = 1.0,
top_k: int = 50,
top_p: float = 1.0,
eos_token_id: int = 0,
) -> Iterable[tuple[int, list[InferenceCache]]]:
prefix, tokens = input_ids[:-1], input_ids[-1:].unsqueeze(0)
# Process prompt
# The input sequence to forward (non-inference path) must have length multiple that of chunk_size.
# We split out excess tokens so that n_chunked tokens can be processed by one forward call and
# process the rest in multiple inference steps.
n_chunked = (prefix.shape[0] // self.args.chunk_size) * self.args.chunk_size
if n_chunked > 0:
_, h = self(prefix[:n_chunked].unsqueeze(0), None)
else:
h = [
InferenceCache.alloc(1, self.args, device=self.device)
for _ in range(self.args.n_layer)
]
for i in range(n_chunked, prefix.shape[0]):
_, h = self(prefix[i : i + 1].unsqueeze(0), h)
# Generate
for _ in range(max_new_length):
with torch.no_grad():
out, h = self(tokens, h)
logits = out[0, -1]
if temperature != 1.0:
logits = logits / temperature
if top_k > 0:
indices_to_remove = logits < torch.topk(logits, k=top_k)[0][-1]
logits[indices_to_remove] = -torch.inf
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > 0.5
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
sorted_indices_to_remove[0] = False
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = -torch.inf
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
if next_token.item() == eos_token_id:
return
tokens = next_token.unsqueeze(0)
yield cast(int, next_token.item()), h
class Mamba2(nn.Module):
def __init__(self, args: Mamba2Config, device: Device = None):
super().__init__()
self.args = args
self.device = device
# Order: (z, x, B, C, dt)
d_in_proj = 2 * args.d_inner + 2 * args.d_state + args.nheads
self.in_proj = nn.Linear(args.d_model, d_in_proj, bias=False, device=device)
conv_dim = args.d_inner + 2 * args.d_state
self.conv1d = nn.Conv1d(
in_channels=conv_dim,
out_channels=conv_dim,
kernel_size=args.d_conv,
groups=conv_dim,
padding=args.d_conv - 1,
device=device,
)
self.dt_bias = nn.Parameter(torch.empty(args.nheads, device=device))
self.A_log = nn.Parameter(torch.empty(args.nheads, device=device))
self.D = nn.Parameter(torch.empty(args.nheads, device=device))
self.norm = RMSNorm(args.d_inner, device=device)
self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=False, device=device)
def forward(self, u: Tensor, h: InferenceCache | None = None):
"""
Arguments
u: (batch, seqlen, d_model) input. seqlen should be a multiple of chunk_size.
h: hidden states for inference step. Initialized to 0s if not present.
Return (y, h)
y: (batch, seqlen, d_model) output
h: updated inference cache after processing `u`
"""
if h:
return self.step(u, h)
A = -torch.exp(self.A_log) # (nheads,)
zxbcdt = self.in_proj(u) # (batch, seqlen, d_in_proj)
z, xBC, dt = torch.split(
zxbcdt,
[
self.args.d_inner,
self.args.d_inner + 2 * self.args.d_state,
self.args.nheads,
],
dim=-1,
)
dt = F.softplus(dt + self.dt_bias) # (batch, seqlen, nheads)
# Pad or truncate xBC seqlen to d_conv
conv_state = F.pad(
rearrange(xBC, "b l d -> b d l"), (self.args.d_conv - u.shape[1], 0)
)
xBC = silu(
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, : u.shape[1], :]
) # (batch, seqlen, d_inner + 2 * d_state))
x, B, C = torch.split(
xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], dim=-1
)
x = rearrange(x, "b l (h p) -> b l h p", p=self.args.headdim)
y, ssm_state = ssd(
x * dt.unsqueeze(-1),
A * dt,
rearrange(B, "b l n -> b l 1 n"),
rearrange(C, "b l n -> b l 1 n"),
self.args.chunk_size,
device=self.device,
)
y = y + x * self.D.unsqueeze(-1)
y = rearrange(y, "b l h p -> b l (h p)")
y = self.norm(y, z)
y = self.out_proj(y)
h = InferenceCache(conv_state, ssm_state)
return y, h
def step(self, u: Tensor, h: InferenceCache) -> tuple[Tensor, InferenceCache]:
"""Take a single inference step for the current input and hidden state
Unlike attention-based models, RNN-based models (eg Mamba) does not need
to look back at all the past tokens to generate a new token. Instead a
hidden state (initialized to 0s initially) is updated for each input and
passed to the next inference step. This means that the total inference
time is linear with respect to the sequence length instead of quadratic
in attention's case.
Arguments
u: (batch, 1, d_model)
h: initial/running hidden state
Return (y, h)
y: (batch, 1, d_model)
h: updated hidden state
"""
assert u.shape[1] == 1, "Only one token can be decoded per inference step"
zxbcdt = self.in_proj(u.squeeze(1)) # (batch, d_in_proj)
z, xBC, dt = torch.split(
zxbcdt,
[
self.args.d_inner,
self.args.d_inner + 2 * self.args.d_state,
self.args.nheads,
],
dim=-1,
)
# Advance convolution input
h.conv_state.copy_(torch.roll(h.conv_state, shifts=-1, dims=-1))
h.conv_state[:, :, -1] = xBC
# Convolution step
xBC = torch.sum(
h.conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1
)
xBC += self.conv1d.bias
xBC = silu(xBC)
x, B, C = torch.split(
xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], dim=-1
)
A = -torch.exp(self.A_log) # (nheads,)
# SSM step
dt = F.softplus(dt + self.dt_bias) # (batch, nheads)
dA = torch.exp(dt * A) # (batch, nheads)
x = rearrange(x, "b (h p) -> b h p", p=self.args.headdim)
dBx = torch.einsum("bh, bn, bhp -> bhpn", dt, B, x)
h.ssm_state.copy_(h.ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx)
y = torch.einsum("bhpn, bn -> bhp", h.ssm_state, C)
y = y + rearrange(self.D, "h -> h 1") * x
y = rearrange(y, "b h p -> b (h p)")
y = self.norm(y, z)
y = self.out_proj(y)
return y.unsqueeze(1), h
def segsum(x: Tensor, device: Device = None) -> Tensor:
"""Stable segment sum calculation.
`exp(segsum(A))` produces a 1-semiseparable matrix, which is equivalent to a scalar SSM.
Source: https://github.com/state-spaces/mamba/blob/219f03c840d5a44e7d42e4e728134834fddccf45/mamba_ssm/modules/ssd_minimal.py#L23-L32
"""
T = x.size(-1)
x = repeat(x, "... d -> ... d e", e=T)
mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=-1)
x = x.masked_fill(~mask, 0)
x_segsum = torch.cumsum(x, dim=-2)
mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=0)
x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
return x_segsum
def ssd(x, A, B, C, chunk_size, initial_states=None, device: Device = None):
"""Structed State Space Duality (SSD) - the core of Mamba-2
This is almost the exact same minimal SSD code from the blog post.
Arguments
x: (batch, seqlen, n_heads, d_head)
A: (batch, seqlen, n_heads)
B: (batch, seqlen, n_heads, d_state)
C: (batch, seqlen, n_heads, d_state)
Return
y: (batch, seqlen, n_heads, d_head)
Source
1. https://tridao.me/blog/2024/mamba2-part3-algorithm/
2. https://github.com/state-spaces/mamba/blob/219f03c840d5a44e7d42e4e728134834fddccf45/mamba_ssm/modules/ssd_minimal.py#L34-L78
"""
assert x.shape[1] % chunk_size == 0
# Rearrange into chunks
# Step 1, 2 and 4 of SSD can be computed in parallel for each chunk across devices (sequence parallel)
# This is not implemented and left as an exercise for the reader 😜
x, A, B, C = [
rearrange(m, "b (c l) ... -> b c l ...", l=chunk_size) for m in (x, A, B, C)
]
A = rearrange(A, "b c l h -> b h c l")
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
L = torch.exp(segsum(A, device=device))
Y_diag = torch.einsum("bclhn, bcshn, bhcls, bcshp -> bclhp", C, B, L, x)
# 2. Compute the state for each intra-chunk
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
states = torch.einsum("bclhn, bhcl, bclhp -> bchpn", B, decay_states, x)
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
# (middle term of factorization of off-diag blocks; A terms)
if initial_states is None:
initial_states = torch.zeros_like(states[:, :1])
states = torch.cat([initial_states, states], dim=1)
decay_chunk = torch.exp(segsum(F.pad(A_cumsum[:, :, :, -1], (1, 0)), device=device))
new_states = torch.einsum("bhzc, bchpn -> bzhpn", decay_chunk, states)
states, final_state = new_states[:, :-1], new_states[:, -1]
# 4. Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
Y_off = torch.einsum("bclhn, bchpn, bhcl -> bclhp", C, states, state_decay_out)
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
Y = rearrange(Y_diag + Y_off, "b c l h p -> b (c l) h p")
return Y, final_state
class RMSNorm(nn.Module):
def __init__(self, d: int, eps: float = 1e-5, device: Device = None):
"""Gated Root Mean Square Layer Normalization
Paper: https://arxiv.org/abs/1910.07467
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(d, device=device))
def forward(self, x, z=None):
if z is not None:
x = x * silu(z)
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
def silu(x):
"""Applies the Sigmoid Linear Unit (SiLU), element-wise.
Define this manually since torch's version doesn't seem to work on MPS.
"""
return x * F.sigmoid(x)