This provides a sanity check to show various 2D and 3D topologies with random data.
python testing.py
will test training on a 3D U-Net using randomly-generated,
synthetic data.
python testing.py --D2
will test training on a 2D U-Net using randomly-generated,
synthetic data.
python testing.py --D2 --inference
will test inference on a 2D U-Net using randomly-generated,
synthetic data.
usage: testing.py [-h] [--dim_length DIM_LENGTH] [--num_channels NUM_CHANNELS]
[--num_outputs NUM_OUTPUTS] [--bz BZ] [--lr LR]
[--num_datapoints NUM_DATAPOINTS] [--epochs EPOCHS]
[--intraop_threads INTRAOP_THREADS]
[--interop_threads INTEROP_THREADS] [--blocktime BLOCKTIME]
[--print_model] [--use_upsampling] [--D2]
[--single_class_output] [--mkl_verbose] [--inference]
[--ngraph] [--keras_api] [--channels_first]
Sanity testing for 3D and 2D Convolution Models
optional arguments:
-h, --help show this help message and exit
--dim_length DIM_LENGTH
Tensor cube length of side
--num_channels NUM_CHANNELS
Number of channels
--num_outputs NUM_OUTPUTS
Number of outputs
--bz BZ Batch size
--lr LR Learning rate
--num_datapoints NUM_DATAPOINTS
Number of datapoints
--epochs EPOCHS Number of epochs
--intraop_threads INTRAOP_THREADS
Number of intraop threads
--interop_threads INTEROP_THREADS
Number of interop threads
--blocktime BLOCKTIME
Block time for CPU threads
--print_model Print the summary of the model layers
--use_upsampling Use upsampling instead of transposed convolution
--D2 Use 2D model and images instead of 3D.
--single_class_output
Use binary classifier instead of U-Net
--mkl_verbose Print MKL debug statements.
--inference Test inference speed. Default=Test training speed
--ngraph Use ngraph
--keras_api Use Keras API. False=Use tf.keras
--channels_first Channels first. NCHW