forked from pycaret/pycaret
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_regression_tuning.py
119 lines (107 loc) · 3.15 KB
/
test_regression_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import sys
sys.path.insert(0, os.path.abspath(".."))
import pandas as pd
import pytest
import pycaret.datasets
import pycaret.regression
from pycaret.utils.generic import can_early_stop
@pytest.mark.skip(reason="no way of currently testing this")
def test_regression_tuning():
# loading dataset
data = pycaret.datasets.get_data("boston")
assert isinstance(data, pd.DataFrame)
# init setup
reg = pycaret.regression.setup(
data,
target="medv",
train_size=0.99,
fold=2,
html=False,
session_id=123,
n_jobs=1,
)
models = pycaret.regression.compare_models(turbo=False, n_select=100)
models.append(pycaret.regression.stack_models(models[:3]))
models.append(pycaret.regression.ensemble_model(models[0]))
for model in models:
print(f"Testing model {model}")
if "Dummy" in str(model):
continue
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="scikit-learn",
search_algorithm="random",
early_stopping=False,
)
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="scikit-optimize",
search_algorithm="bayesian",
early_stopping=False,
)
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="optuna",
search_algorithm="tpe",
early_stopping=False,
)
# TODO: Enable ray after fix is released
# pycaret.regression.tune_model(
# model,
# fold=2,
# n_iter=2,
# search_library="tune-sklearn",
# search_algorithm="random",
# early_stopping=False,
# )
# pycaret.regression.tune_model(
# model,
# fold=2,
# n_iter=2,
# search_library="tune-sklearn",
# search_algorithm="optuna",
# early_stopping=False,
# )
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="optuna",
search_algorithm="tpe",
early_stopping="asha",
)
# pycaret.regression.tune_model(
# model,
# fold=2,
# n_iter=2,
# search_library="tune-sklearn",
# search_algorithm="hyperopt",
# early_stopping="asha",
# )
# pycaret.regression.tune_model(
# model,
# fold=2,
# n_iter=2,
# search_library="tune-sklearn",
# search_algorithm="bayesian",
# early_stopping="asha",
# )
if can_early_stop(model, True, True, True, {}):
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="tune-sklearn",
search_algorithm="bohb",
early_stopping=True,
)
assert 1 == 1
if __name__ == "__main__":
test_regression_tuning()